
SVARs With Occasionally-Binding

Constraints ∗
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Abstract

We develop a structural VAR in which an occasionally-binding constraint generates

censoring of one of the dependent variables. Once the censoring mechanism is triggered,

we allow some of the coefficients for the remaining variables to change. We show

that a necessary condition for a unique reduced form is that regression functions for

the non-censored variables are continuous at the censoring point and that parameters

satisfy some mild restrictions. In our application the censored variable is a nominal

interest rate constrained by an effective lower bound (ELB). According to our estimates

based on U.S. data, once the ELB becomes binding, the coefficients in the inflation

equation change significantly, which translates into a change of the inflation responses

to (unconventional) monetary policy and demand shocks. Our results suggest that

the presence of the ELB is indeed empirically relevant for the propagation of shocks.

We also obtain a shadow interest rate that shows a significant accommodation in the

early phase of the Great Recession, followed by a mild and steady accommodation until

liftoff in 2016.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are widely used in central banks, by

regulators, and in academia to study the effects of monetary and macroprudential policies and

the propagation of shocks in the macro economy. The most recent vintage of these models

involves occasionally-binding constraints arising from, for instance, an effective lower bound

(ELB) on nominal interest rates. Agents’ decision rules in these models typically exhibit

“kinks,” meaning the elasticity of the choice variables, say output or prices, with respect

to the underlying state variables changes drastically when the constraint becomes binding.

We used this observation in Aruoba, Cuba-Borda, Higa-Flores, Schorfheide, and Villalvazo

(2021), henceforth ACHSV, to approximate such decision rules through piecewise-linear and

continuous (PLC) functions. The model solution has the form of a vector autoregression

(VAR) with a censored dependent variable and regime switching coefficients. The regime

shift is endogenous and it is linked to the censoring mechanism. For instance, in a model

with an ELB constraint, the VAR coefficients switch once the interest rate reaches the lower

bound.

Our paper develops a structural VAR (SVAR) that mimics the PLC-DSGE model solu-

tion, but can be used independently of an optimization-based structural model to study the

propagation of shocks in settings where an observable is subject to an occasionally-binding

constraint. Throughout this paper, we focus on an application that features nominal in-

terest rates that are constrained by an ELB.1 An important empirical question is whether

the propagation of shocks works differently when the economy reaches the ELB because

interest rates no longer can fall in response to adverse shocks and agents may adjust their

behavior in light of the constraint. In densely parameterized models such as time-varying

coefficient structural VARs (TVC-SVARs), these effects are empirically difficult to measure

because for many countries we only have a few years of ELB observations available. This

makes it challenging to obtain precise estimates. Our proposed model is able to avoid this

problem because the coefficient shift that takes place once the constrained becomes binding

is controlled by a low-dimensional vector of additional parameters.

1We use the concept of effective instead of zero lower bound (ZLB). In a DSGE model that explicitly
models money demand, such as the one in Aruoba and Schorfheide (2011), an interest rate less than zero
means a monetary equilibrium ceases to exist. One can generalize these models to include storage cost
of physical money and allow for the interest rate to go below zero. In fact the Bank of Japan and the
European Central Bank, among other central banks, have been able to reduce their policy rates below zero.
Nonetheless, it remains plausible to assume that there is a bound beyond which it becomes very difficult to
lower interest rates further and this is what the literature considers to be the ELB.
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There is a small, but growing literature on multivariate time series models with a censored

interest rate variable, including Iwata and Wu (2006), Ikeda, Li, Mavroeidis, and Zanetti

(2020), Mavroeidis (2020), Carriero, Clark, Marcellino, and Mertens (2021) and Johannsen

and Mertens (2021). All of these models distinguish between a shadow rate, y∗1,t in our

notation, and the actual interest rate y1,t = max{y∗1,t, c}. The models differ, however, in

terms of assumptions about the extent to which model coefficients are allowed to change

when the economy reaches the ELB.

The key departure of our paper from the existing literature is the assumption that the

coefficients that characterize the behavior of the private-sector variables y2,t (output gap and

inflation in our application) as a function of lagged dependent variables and current structural

shocks are allowed to switch once the ELB becomes binding. We define the endogenous

regime indicator variable st = I{y1,t > c}. The regime-dependency of the coefficients is akin

to capturing nonlinearities in decision rules that arise in a DSGE model with occasionally-

binding constraints.

The specification of a dynamic multivariate model with censoring and regime-dependent

coefficients faces two challenges: parsimony and the existence of a unique reduced form. We

show in this paper that these challenges are closely connected. The existence of a unique

reduced form is referred to in the literature on censored simultaneous equations models as

coherency and completeness; see Mavroeidis (2020). In every period t we can compute two

hypothetical values for yt = [y1,t, y
′
2,t]
′: one is based on the st = 1 coefficients and the other

one is based on the st = 0 coefficients. For yt to be uniquely determined, it is necessary

that only one of these two values has the property that the indicator function I{y1,t > c}
coincides with the st that was used to compute yt. Typically, this uniqueness cannot be

achieved without restricting the domain of the structural innovations εt.
2

We prove three theoretical results. (i) To obtain uniqueness without domain restrictions

for εt, it is necessary that the reduced-form regression functions are continuous whenever

st switches between 0 and 1. The continuity requirement automatically imposes parsimony.

We show that in a VAR with an n-dimensional vector yt, the restriction reduces the number

of free coefficients for the second regime from (n − 1) × (k + n), where k is the number

of regressors in each private-sector equation, to n − 1. (ii) Continuity is not sufficient for

uniqueness without further coefficient restrictions. We provide a set of parameter restrictions

for our SVAR specification that are necessary and sufficient to obtain uniqueness for all

2In a VAR setting, the domain restriction would also be dependent on the lagged values of yt.



This Version: June 15, 2021 3

εt. (iii) We show that once continuity is imposed, the private sector equations can be

rewritten as a simultaneous relationship between y1,t, y2,t, and the shadow rate y∗1,t with

constant coefficients on current and lagged variables. Thus, in our application the piecewise-

linear private-sector regression functions can be re-interpreted as agents reacting to a linear

combination of the actual interest rate y1,t and the shadow rate y∗1,t. Results (i) and (iii) are

new. Conditional on having established (iii), it can be shown that (ii) reproduces a result in

Mavroeidis (2020).

There is a debate in the literature whether lags of the censored interest rate y1t or the

shadow rate y∗1t should appear in the conditional mean function. While this does not matter

for the aforementioned theoretical results, it affects the estimation and identification of the

model. In the DSGE model literature, authors often use lagged actual interest rates in the

specification of the monetary policy rule, e.g., ACHSV, which means that the lagged actual

interest rate becomes a state variable for private-sector decisions. This is the approach we

follow in the empirical analysis.

Our empirical model also allows for stochastic volatility in the structural shocks. We use

a bootstrap particle filter (BSPF) to integrate out the latent volatility from the likelihood

function. We combine the likelihood function with a prior distribution and conduct Bayesian

inference. Due to the presence of censoring, cross-regime coefficient restrictions, and stochas-

tic volatility, the posterior distribution of the model parameters is non-standard. We use a

sequential Monte Carlo (SMC) algorithm to draw from the posterior distribution; see Herbst

and Schorfheide (2014, 2015) for DSGE applications and Bognanni and Herbst (2018) for

an application to an SVAR with exogenous regime switches. Because the likelihood function

inside the posterior sampler is evaluated using the BSPF, the resulting algorithm belongs to

the SMC2 family, studied by Chopin, Jacob, and Papaspiliopoulos (2013).

Abstracting from the nonlinearities generated by the censoring of the nominal interest

rates, piecewise-linear regression equations for private-sector variables, and stochastic volatil-

ity, the specification of the SVAR follows the three-variable model estimated in Baumeister

and Hamilton (2018), henceforth BH. While the prior distribution for the VAR coefficients

is not identical to the one used by BH, the elicitation for the coefficients that describe the

contemporaneous interaction between output, inflation, and interest rates follows a similar

logic. The prior combines beliefs about aggregate demand and supply elasticities formed

based on a simple New Keynesian DSGE model with beliefs about directions of impulse

responses. As in BH, in the absence of observations from the ELB regime, our model is only
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set-identified. However, as shown in Mavroeidis (2020), the ELB regime generates additional

identifying information and in our case leads to point identification.

We estimate our model based on quarterly U.S. data from 1984:Q1 to 2018:Q4. The

vector yt in our empirical analysis comprises the federal funds rate as the censored vari-

able, output gap, and inflation. Based on the inspection of the posterior distribution and a

marginal data density (MDD) comparison between a restricted and an unrestricted specifica-

tion, we find evidence in favor of a kink in the inflation regression function. A comparison of

impulse response functions (IRFs) conditional on 1999:Q1 data (the U.S. was far away from

the ELB) and conditional on 2009:Q1 data (the U.S. was at the ELB) yields the following

findings: a negative monetary policy shock that creates the same size response in the shadow

rate is more inflationary at the ELB on impact. This shock also generates a slightly larger

response of the output gap, though credible intervals conditional on the two dates overlap.

The response of inflation to a negative demand shock differs significantly when the ELB is

non-binding and binding: Inflation falls in the former case but it slightly rises in the latter

case. The difference between the responses persists for about three years. The output gap

responses to demand and supply shocks do not significantly differ at and away from the

ELB.

Our paper is related to several strands of the literature. From a methodological perspec-

tive, the paper most closely related to our work is Mavroeidis (2020). He also considers an

SVAR with a censored dependent variable, or an occasionally-binding constraint, to capture

the ELB constraint on nominal interest rates. He specifies the private sector equations as

simultaneous relationship between the censored variable y1,t, the latent variable y∗1,t, and y2,t.

As discussed above, it turns out that our model with continuity imposed on the private-sector

regression functions is identical to his specification, except in the following dimensions: our

empirical specification allows for heteroskedastic structural shocks, which is important for

inference on switches in the conditional mean function. Mavroeidis’ specification allows for

both lags of y1,t and the latent variable y∗1,t on the right-hand side of the VAR specification,

whereas we stay close to the DSGE model specification in ACHSV and only use the former.

A detailed comparison is provided in a separate subsection of our paper.

Building on an older literature on simultaneous equations models with censored depen-

dent variables, e.g., Nelson and Olsen (1978), Gourieroux, Laffont, and Monfort (1980), and

Blundell and Smith (1989), the emphasis in Mavroeidis (2020) is on the identifying infor-

mation that the censoring provides for the propagation of structural shocks. Important for

the identification is whether, in the case of the ELB application, the private-sector variables
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respond to the actual censored interest rate or the uncensored shadow interest rate. In our

application, we let inflation and output gap respond to monetary policy shocks3, even if

the economy is at the ELB, which is similar in spirit to the censored SVAR specification

in Mavroeidis (2020) in which agents respond to a shadow rate. The identifying informa-

tion encoded in the censoring mechanism is implicitly exploited in our Bayesian estimation

through the updating of the SVAR coefficients based on the likelihood function.

Our empirical application focuses on the propagation of structural shocks in the U.S.

at and away from the ELB. In this regard, it is closely related to Debortoli, Gaĺı, and

Gambetti (2019), Ikeda, Li, Mavroeidis, and Zanetti (2020), and Johannsen and Mertens

(2021). Debortoli, Gaĺı, and Gambetti (2019) estimate an SVAR with exogenously time-

varying coefficients (TVC-SVAR) using longer-term interest rates that do not reach the

ELB. Based on their densely parameterized model, they do not find discernible differences

between responses at and away from the ELB, which leads them to conclude that the ELB

is empirically irrelevant. Our model allows for time-variation in coefficients in a much more

parsimonious way and enables us to detect a significant change in coefficients that alters in

particular the propagation of shocks to inflation. The analyses in Ikeda, Li, Mavroeidis, and

Zanetti (2020) and Johannsen and Mertens (2021) focus on the propagation of monetary

policy shocks whereas we also consider supply and demand shocks. Our results on monetary

policy shocks are qualitatively consistent with Johannsen and Mertens (2021) who find that

monetary accommodation during the recent ELB spell in the U.S. would have provided more

stimulus than in other times.

The remainder of the paper is organized as follows. The specification of our SVAR

with a censored dependent-variable and state-dependent regression functions is presented in

Section 2. Our prior distribution for the SVAR parameters is discussed in Section 3. The

likelihood function is derived in Section 4 and the SMC algorithm to implement the posterior

computations is summarized in Section 5. Section 6 presents the empirical analysis and

Section 7 concludes. Theoretical derivations and additional empirical results are relegated

to the Online Appendix.

3This is also the case in DGSE model solutions; see ACHSV.
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2 SVAR Specification

We are using a structural vector autoregression (SVAR) to model the law of motion of the

n× 1 vector ỹt. We express the SVAR in terms of deviations from a mean µ and define4

yt = ỹt − µ.

There are two common ways of normalizing the coefficients of an SVAR: by setting the

matrix of coefficients associated with the time t endogenous variables yt equal to the identity

matrix, or by setting the matrix that governs the impact of the structural shocks εt equal to

the identity matrix. We begin with the former normalization and call it the Φ representation:

yt = Φ1yt−1 + . . .+ Φpyt−p + Φc + Φεεt, (1)

where εt ∼ N(0, D) is a vector of structural innovations and D is a diagonal matrix. Even

though in the current specification it is not separately identifiable from µ, we keep the

intercept Φc in the notation. We will use it later when we introduce regime-dependent

private-sector behavior. Reduced-form innovations can be defined as

ut = Φεεt, ut ∼ N(0,Σ), where Σ = ΦεDΦ′ε. (2)

Define the 1× k vector x′t = [y′t−1, . . . , y
′
t−p, 1], Φ = [Φ1, . . . ,Φp,Φc]

′, and Φε = Φ′ε so that we

can write the VAR as

y′t = x′tΦ + ε′tΦ
ε. (3)

Let A = (Φε)−1 and multiply (3) by A to re-normalize the VAR and obtain what we call the

A representation of the VAR:

y′tA = x′tB + ε′t, (4)

where B = ΦA.

Starting point for the subsequent analysis will be a third representation, which we refer to

as AΦ representation. It combines a monetary policy rule written in A form with the private-

sector equations in Φ form and has been used, for instance, in Del Negro and Schorfheide

(2009). The Φ-form of the private-sector equations resemble the decision rules in a DSGE

model solution that are allowed to differ at and away from the ELB. This representation

4The time invariant mean µ could also be replaced by a deterministic trend function µt.



This Version: June 15, 2021 7

also facilitates our proof of the existence of a unique reduced form; see Proposition 1 in

Section 2.3 below.

Partition y′t = [y1,t, y
′
2,t] and ε′t = [ε1,t, ε

′
2,t], where y1,t corresponds to the interest rate

and ε1,t is the monetary policy shock. Moreover, partition B = [B·1, B·2], where B·1 is a

column vector that stacks the coefficients of the y1,t equation and the columns of the matrix

B·2 stack the coefficients for the private-sector equations. Finally, partition A·1 = [A11|A21],

where we use | to indicate that the partitions are stacked. Using this notation, the monetary

policy rule becomes

y1,tA11 + y′2,tA21 = x′tB·1 + ε1,t. (5)

Similarly, let Φ = [Φ·1,Φ·2] and Φε
·2 = [Φε

12,Φ
ε
22]. The private-sector behavior is described in

Φ form:

y′2,t = x′tΦ·2 + ε1,tΦ
ε
12 + ε′2,tΦ

ε
22. (6)

In the remainder of this section we will extend the specification in (5) and (6) by allowing

for censoring of y1,t, censoring-regime-dependent coefficients for the private-sector equations,

and stochastic volatility.

2.1 Censoring

In order to capture the ELB constraint, which we assume to be zero, we introduce censoring.

We use ỹ∗1,t to denote the desired or shadow interest rate, let y∗1,t = ỹ∗1,t − µ1, and write the

monetary policy rule as

y∗1,tA11 + y′2,tA21 = x′tB·1 + ε1,t. (7)

Here we replaced y1,t in (5) by y∗1,t. The relationship between y1,t and y∗1,t is given by

y1,t = max {y∗1,t,−µ1}.

The µ1 threshold arises because y1,t = ỹ1,t−µ1 and the ELB constraint applies to the actual

and not the demeaned nominal interest rate. We will assume that both the central bank

and the private sector react to lagged y1,t instead of y∗1,t. However, we do allow agents to

react to the monetary policy shock when the ELB is binding. Both of these assumptions

are consistent with the DSGE model in ACHSV. Thus, (6) remains unchanged. We define

y∗t
′ = [y∗1,t, y

′
2,t].
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2.2 Regime-Dependent Private-Sector Behavior

We will now extend the model and allow the private sector to change its behavior once the

economy reaches the ELB. We introduce the observable regime (or ELB) indicator

st = I{y1,t > −µ1} (8)

and write the private-sector equations as

y′2,t = x′tΦ·2(st) + u′2,t(st), (9)

where we define

u′2,t(st) = ε1,tΦ
ε
12(st) + ε′2,tΦ

ε
22(st).

Plugging the expression for y′2,t from (9) into the monetary policy rule (7) leads to the Φ

form of the interest rate equation:

y∗1,t =
1

A11

[
x′t
(
B·1 − Φ·2(st)A21

)
+ ε1,t

(
1− Φε

12(st)A21

)
− ε′2,tΦε

22(st)A21

]
. (10)

Define

Φ·1(st) =
1

A11

(
B·1 − Φ·2(st)A21

)
, (11)

u1,t(st) =
1

A11

[
ε1,t
(
1− Φε

12(st)A21

)
− ε′2,tΦε

22(st)A21

]
,

such that we can write

y∗1,t = x′tΦ·1(st) + u1,t(st). (12)

In view of (8), for the model specification to be internally consistent, it has to be the case

that whenever the st = 1 regression functions are active then y1,t = y∗1,t and y∗1,t > −µ1 must

hold. Likewise, whenever the st = 0 regression functions are active, it has to be the case

that y1,t = −µ1 and y∗1,t ≤ −µ1. Given a set of parameters A·1, B·1, Φ·2(s), Φε
·2(s), lagged

values xt, and a vector of structural shocks εt we can distinguish three cases:

Case 1 – Uniqueness: conditional on lagged values xt and the innovation εt, the state st,

the latent variable y∗1,t, and y2,t are uniquely determined. If

x′tΦ·1(1) + u1,t(1) > −µ1, then x′tΦ·1(0) + u1,t(0) > −µ1 which implies st = 1.
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Alternatively, if

x′tΦ·1(1) + u1,t(1) ≤ −µ1, then x′tΦ·1(0) + u1,t(0) ≤ −µ1 which implies st = 0.

We use EU(xt) to denote the set of εt values for which st is unique.

Case 2 - Indeterminacy (Incompleteness): conditional on lagged values xt and the

innovation εt, the model is consistent with st = 0 and st = 1, which means that there are

two possible values for y∗1,t and y2,t, respectively. Formally,

x′tΦ·1(1) + u1,t(1) > −µ1 and x′tΦ·1(0) + u1,t(0) ≤ −µ1 which implies st = 1 or st = 0.

We use EI(xt) to denote the set of εt values for which st is not unique.

Case 3 - Non-existence (Incoherency): conditional on lagged values xt and the innova-

tion εt, the model is neither consistent with st = 0 nor st = 1 because

x′tΦ·1(1) + u1,t(1) ≤ −µ1 and x′tΦ·1(0) + u1,t(0) > −µ1.

We use EN(xt) to denote the set of εt values for which we have non-existence.

The fact that the existence and uniqueness of yt depend on the lagged endogenous vari-

ables stacked in xt and the structural innovations εt is an undesirable feature of the model.

To rule out non-existence, in general one needs to restrict the domain of the innovations εt;

see Ascari and Mavroeidis (2020) and Mavroeidis (2020). We will show in the following sec-

tion that a necessary condition for the uniqueness condition to hold for all (xt, εt) is that the

piecewise linear private sector regression functions are continuous at the kink. Moreover, we

provide a necessary and sufficient restriction on the VAR parameter space that guarantees

uniqueness for all (xt, εt).

2.3 Piecewise Linear and Continuous Regression Functions

Building on ACHSV, we now impose that the private sector uses regression functions that

are continuous at the kink. We refer to these regression functions as piecewise linear and

continuous (PLC). Consider the monetary policy rule in Φ form. From (10) we deduce that

the ELB starts to bind whenever

x′t
(
B·1 − Φ·2(1)A21

)
= −µ1A11 − ε1,t

(
1− Φε

12(1)A21

)
+ ε′2,tΦ

ε
22(1)A21. (13)
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Let us denote the jth element of the vector xj,t, j = 1, . . . , k, with the understanding that

xkt = 1 (intercept). Likewise, we denote the jth rows of B·1 and Φ·2 by Bj1 and Φj2,

respectively. Using this notation, we solve (13) for x1,t to obtain

x1,t = −

(
k−1∑
j=2

xj,t
Bj1 − Φj2(1)A21

B11 − Φ12(1)A21

)
− Bk1 − Φk2(1)A21 + µ1A11

B11 − Φ12(1)A21

(14)

−ε1,t
1− Φε

12(1)A21

B11 − Φ12(1)A21

+ ε′2,t
Φε

22(1)A21

B11 − Φ12(1)A21

.

Continuity at the kink implies that

x1,tΦ12(1) +

(
k−1∑
j=2

xj,tΦj,2(1)

)
+ Φk2(1) + ε1,tΦ

ε
12(1) + ε′2,tΦ

ε
22(1) (15)

= x1,tΦ12(0) +

(
k−1∑
j=2

x′j,tΦj,2(0)

)
+ Φk2(0) + ε1,tΦ

ε
12(0) + ε′2,tΦ

ε
22(0).

Now plug the expression for x1,t in (14) into Equation (15) and use the continuity restrictions

to solve for the coefficients in the s = 0 regime:

Φj2(0) = Φj2(1) +
Bj1 − Φj2(1)A21

B11 − Φ12(1)A21

Φ∆
12, j = 2, . . . , k − 1, (16)

Φk2(0) = Φk2(1) +
Bk1 − Φk2(1)A21 + µ1A11

B11 − Φ12(1)A21

Φ∆
12,

Φε
12(0) = Φε

12(1) +
1− Φε

12(1)A21

B11 − Φ12(1)A21

Φ∆
12,

Φε
22(0) = Φε

22(1)− Φε
22(1)A21

B11 − Φ12(1)A21

Φ∆
12,

where

Φ∆
12 = Φ12(0)− Φ12(1).

The unrestricted coefficient matrices are Φ·2(1), Φε
·2(1), and Φ∆

12. The dimension of Φ∆
12 is

(n−1)×1. Two special cases are noteworthy. First, if Φ∆
12 = 0 then the regression functions

are strictly linear and have no kink: Φ·2(0) = Φ·2(1) and Φε
·2(0) = Φε

·2(1). Second, if the

private sector does not react to the monetary policy shock, i.e., Φε
12(1) = 0 and Φε

12(0) = 0,

then Φ∆
12 = 0, which in turn implies that there is no kink in the reactions to x2,t and ε2,t:

Φ22(0) = Φ22(1) and Φε
22(0) = Φε

22(1).
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2.4 PLC Regression Functions and Uniqueness

The following proposition summarizes our theoretical results. First, we show that continuity

of the regression functions is a necessary condition to achieve uniqueness without having to

restrict the domain of εt conditional on the lagged values xt. Second, we provide necessary

and sufficient restrictions for the VAR parameters that ensure uniqueness for all (xt, εt).

Proposition 1

(i) (Necessary Condition) Only if the piecewise linear private sector regression functions

are continuous at the kink, then uniqueness can be obtained for all (xt, εt), i.e., Pxt{εt ∈
EU(xt)} = 1 for all xt.

(ii) (Necessary and Sufficient Condition) Suppose that the piecewise linear private sector

regression functions are continuous at the kink. If and only if

sign
(
B11 − Φ12(1)A21

)
= sign

(
B11 − Φ12(0)A21

)
,

then uniqueness is obtained for all (xt, εt), i.e., Pxt{εt ∈ EU(xt)} = 1 for all xt.

A proof of the proposition is provided in the Online Appendix. In our estimation, we

will impose the parameter restrictions described in Proposition 1(ii) to ensure uniqueness of

(st, y
∗
1,t, y2,t) conditional on all values of (xt, εt).

2.5 Comparison to Mavroeidis (2020)

Our model is related to the censored VAR specification considered in Mavroeidis (2020). He

writes the private-sector equations in A form, which can be stated as

y∗1,tA
∗
12 + y1,tÃ12 + y′2,tA22 = x′tB·2 + ε′2,t, y1,t = max{y∗1,t,−µ1}.

This specification allows agents to react to a linear combination of the shadow rate y∗1,t and

the actual (constrained) interest rate y1,t. Using our state-dependent notation, his private

sector specification can be rewritten as

y∗1,tA12(st) + y′2,tA22 = x′tB·2(st) + ε′2,t, (17)



This Version: June 15, 2021 12

where

st = I{y1,t > −µ1}, A12(s) =

{
A∗12 + Ã12 if s = 1

A∗12 if s = 0
,

B·2(s) =
[
B12| . . . |B(k−1)2|Bk2(s)

]
, Bk2(s) =

{
0 if s = 1

µ1(A12(1)− A12(0)) if s = 0
.

Here Bj2, j = 1, . . . , k, is the jth row of B·2. Note that only the last row of B·2 is regime

dependent. Recall that we fixed it to zero for s = 1. For s = 0 it captures that y1,t = −µ1

in the ELB regime.5

We will refer to our model, comprising (7) and (9), as modelM(Φ·2(s),Φε
·2(s)), and to the

(restricted) Mavroeidis model, comprising (7) and (17) as model M(A12(s)). Moreover, we

denote theM(Φ·2(s),Φε
·2(s)) with PLC private sector regression functions asMPLC(Φ·2(s),Φε

·2(s)).

The relationship between the three specifications is summarized in the following proposition.6

Proposition 2

(i) M(Φ·2(s),Φε
·2(s)) ⊃M(A12(s)),

(ii) MPLC(Φ·2(s),Φε
·2(s)) =M(A12(s)).

A proof of the proposition is provided in the Online Appendix. The intuition for Part (i)

is straightforward. We started out in this paper from a very general model specification in

which the private-sector equations are regime dependent. The possibility of private-sector

behavior changing when the ELB becomes binding generates an additional (n− 1)× (k+n)

coefficients, compared to a constant-coefficient VAR. The M(A12(s)) model, on the other

hand, only adds n− 1 coefficients.

Part (ii) of the proposition combines two insights. First, imposing a PLC structure onto

the private-sector equations reduces the number of additional unrestricted parameters in the

ELB regime from (n− 1)× (k+ n) to n− 1 parameters, see (16), which is the same number

of additional parameters as in the M(A12(s)) model. Second, with some algebra it can be

shown thatM(A12(s)) delivers PLC regression functions for the private sector. The equality

of the model sets implies that PLC regression functions for the private sector can only be

5Mavroeidis (2020) refers to the model with A∗
12 = 0 as kinked SVAR (KSVAR), to the model with

Ã12 = 0 as censored SVAR (CSVAR), and the general specification as censored and kinked SVAR (CKSVAR).
6We are grateful to one of the referees for providing valuable conjectures that lead to Proposition 2.
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obtained if the state-dependence in the A representation of the private sector equations is

concentrated in the reaction to shadow rate movements.

We show in the Online Appendix that by solving the locus at which the ELB becomes

binding, see (13), for ε1,t instead of x1,t, the necessary and sufficient condition in Proposi-

tion 1(ii) can equivalently be expressed as

sign
(
1− Φε

12(1)A21

)
= sign

(
1− Φε

12(0)A21

)
.

Moreover, we show that the condition is equivalent to the condition stated in Proposition 1

of Mavroeidis (2020), which in turn dates back to Gourieroux, Laffont, and Monfort (1980).

This is unsurprising given our Proposition 2(ii).

As mentioned in the Introduction, our SVAR specification allows for heteroskedastic

structural shocks, which is important for inference on switches in the conditional mean

function. Mavroeidis’ specification allows for both lags of y1,t and the latent variable y∗1,t

on the right-hand side of the VAR specification, whereas we stay close to the DSGE model

specification in ACHSV and only use the former.

2.6 Stochastic Volatility

In order to make the empirical model more flexible, we allow for stochastic volatility in the

structural innovations εt. We replace the homoskedasticity assumption εt ∼ N(0, D) by

εt ∼ N(0, Dt), lnDii,t = lnDii + ζi,t, ζi,t = ρζ,iζi,t−1 + ςiηi,t, ηi,t ∼ N(0, 1). (18)

Here Dii,t, i = 1, . . . , n are the n diagonal elements of the (diagonal) matrix Dt. For each

variable i we obtain two additional parameters, (ρζ,i, ςi) that govern the stochastic volatility

process. The parameter ρζ,i controls the persistence and ςi the variance of the stochastic

volatility process. (2) is replaced by an equation with time-dependent covariance matrices:

ut = Φε(st)εt, ut ∼ N(0,Σt(st)), where Σt(st) = Φε(st)DtΦ
′
ε(st). (19)

Note that none of the calculations in Section 2.3 depended on the covariance matrices D and

Σ. Thus, the continuity restrictions in (16) and the result in Proposition 1 are not affected

by the presence of heteroskedasticity.
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2.7 Parameter Summary

After allowing for regime-dependent private-sector regression functions and imposing conti-

nuity at the kink, the parameters of the SVAR model with stochastic volatility are:

µ︸︷︷︸
n×1

, A·1︸︷︷︸
n×1

, B·1︸︷︷︸
k×1

, Φ·2(1)︸ ︷︷ ︸
k×(n−1)

, Φε
·2(1)︸ ︷︷ ︸

n×(n−1)

, Φ∆
12︸︷︷︸

1×(n−1)

, {Dii}ni=1︸ ︷︷ ︸
n

, {ρζ,i, ςi}ni=1︸ ︷︷ ︸
2n

. (20)

The interest rate coefficient in A·1 is normalized to one. Moreover, the elements in the last

rows of B·1 and Φ·2(1) are fixed at zero because the level of the observables ỹt is captured

by µ. Notationally, it is convenient to keep the intercepts in the specification, because they

are non-zero for Φ·2(0) in the ELB regime.

3 Prior Distribution

In our subsequent empirical application we assume that y1,t corresponds to the nominal in-

terest rate Rt, and y′2,t = [zt, πt], where zt is output gap and πt is inflation. We interpret the

innovations εt = [εR,t, εD,t, εS,t] as monetary policy, demand, and supply shocks, respectively.

We use Bayesian techniques to estimate the SVAR with ELB censoring and piecewise-linear

regression functions. This requires the specification of a prior distribution. Rather than

specifying the prior directly on the unrestricted elements of the parameters listed in (20),

we consider several transformations to facilitate the elicitation of the prior. These trans-

formations are presented in Section 3.1. Section 3.2 summarizes the specification of our

baseline prior. Section 3.3 discusses adjustments to the baseline prior and the treatment of

hyperparameters.

3.1 (Re)parameterization of the SVAR

We follow Baumeister and Hamilton (2018) and specify a prior on contemporaneous interac-

tions between interest rates, output gap, and inflation in the regime in which the ELB is not

binding. Using the notation in (4), these interactions are summarized in the matrix A(1),

which we partition into A(1) = [A·1, A·2(1)]. The first column of A(1), denoted by A·1, is

included in the parameter list (20) and does not depend on the state s. The remaining n−1

columns, collected in the matrix A·2(1), replace the n× (n− 1) matrix Φε
·2(1) in (20).
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To obtain an expression for A·2(s) as a function of Φε
·2(s), we solve (5) for ε1,t and plug

the expression into (9). This yields:

y′2,t = x′tΦ·2(s) +
(
y1,tA11 + y′2,tA21 − x′tB·1

)
Φε

12(s) + ε′2,tΦ
ε
22(s).

After re-arranging terms we obtain

−y1,tA11Φε
12(s) + y′2,t

(
I − A21Φε

12(s)
)

= x′t
(
Φ·2(s)−B·1Φε

12(s)
)

+ ε′2,tΦ
ε
22(s). (21)

Let A·2(s) = [A12(s)|A22(s)] and deduce that

A12(s)︸ ︷︷ ︸
1×(n−1)

= −A11Φε
12(s)

(
Φε

22(s)
)−1

, A22(s)︸ ︷︷ ︸
(n−1)×(n−1)

=
(
I − A21Φε

12(s)
)(

Φε
22(s)

)−1
. (22)

We follow Baumeister and Hamilton (2018) by expressing the matrix of contemporaneous

interactions, in our case for the non-binding regime s = 1, as a function of the parameters

[ψπ, ψz, αS, βD, γD]′:

A(1) =


1 −γD 0

−ψz 1 1

−ψπ −βD −αS

 . (23)

The parameterization of the A(1) matrix is motivated by a three-equation New Keynesian

DSGE model. Each column corresponds to an equation, and each row to a variable. The

“1” entries are normalizations. Recall that the observables are ordered as follows: y′t =

[Rt, zt, πt]. We interpret the first column of A(1) as a Taylor rule with output and inflation

gap coefficients ψz and ψπ, respectively.

The second column represents the Euler equation after the expectations of next period’s

inflation and output gap have been replaced by AR(1) forecasts. This creates a contempora-

neous relationship between the output gap (being proportional to consumption), the nominal

interest rate, and inflation. The parameter βD can be interpreted as an aggregate demand

elasticity. The third column represents the New Keynesian Phillips curve with marginal

costs replaced by output gap and expected inflation replaced by an AR(1) forecast. The

coefficient αS can be interpreted as a supply elasticity.

We replace αS by α∆
S = αS − βD and impose the following domain/sign restrictions on

the coefficients:

ψπ ≥ 0, ψz ≥ 0, α∆
S ≥ 0, βD ≥ 0, γD ≤ 0. (24)
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The restriction of βD ≥ 0 may seems counterintuitive in view of the interpretation of the

coefficient as a demand elasticity. However, it is consistent with a DSGE model in which the

demand equation represents a consumption Euler equation and a rise in (expected) inflation

lowers real returns which creates an incentive to increase current-period consumption.

To facilitate the elicitation of a prior distribution, it is helpful to derive the inverse of

A(1), which determines the contemporaneous impact of the three innovations:

[A(1)]−1 ∝


α∆
S (βD + α∆

S )γD γD

ψπ + (βD + α∆
S )ψz (βD + α∆

S ) 1

−(ψπ + βDψz) −(βD + γDψπ) γDψz − 1

 . (25)

Here ∝ denotes proportionality. The first row of the matrix captures the response of interest

rates, the output gap, and inflation to a monetary policy shock ε1,t. In order for interest

rates to rise, and output and inflation to fall in response to a contractionary monetary policy

shock we need α∆
S ≥ 0, (βD + α∆

S ) ≥ 0, and γD ≤ 0, all of which are implied by (24). The

sum (βD+α∆
S ) controls the relative response of output gap and inflation and the ratio γD/α

∆
S

is the relative response of inflation and interest rates.

The second row of [A(1)]−1 represents the contemporaneous demand shock response.

Output gap and prices move in the same direction because we imposed βD +α∆
S ≥ 0 and the

policy rule coefficients ψπ and ψz are also positive. Finally, the third row of the matrix in (25)

determines the response to a supply shock. The directions of the inflation and output gap

responses to a supply shock depend on the specific parameterization. For instance, assuming

that γD < 0, inflation is falling in response to the supply shock. The output response is

given by −(βD + γDψπ). We observe a rise in output if −γD > βD/ψπ.

Our prior distribution is specified over the set of parameters

θ =
(
µ, ψπ, ψz, α

∆
S , βD, γD, B·1, {Φ·i(1)}ni=2,Φ

∆
12, {
√
Dii}ni=1, {ρζ,i, ςi}ni=1

)
. (26)
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3.2 Distributional Assumptions

Define the vector of hyperparameters λ = [λI , λφ, λd, λ0, λl, λ∆]′. We consider a baseline

prior of the form

p̃(θ|λ) = p̃(µ|λI)p̃(ϑ)

(
n∏
i=1

p̃(
√
Dii|ϑ;λd)p̃(B·1|D;λφ, λ0, λl)p̃(ρζ,i, ςi)

)
(27)

×

(
n∏
i=2

p̃
(
Φ·i(1)|ϑ,D;λφ, λ0, λl

))
p̃(Φ∆

12|λ∆), where ϑ = (ψπ, ψz, α
∆
S , βD, γD).

Recall that D is the diagonal matrix with elements Dii, i = 1, . . . , n. As previously noted in

Section 2.7, the last element of the vectors B·1 and Φ·i(1), respectively, is set equal to zero

and essentially excluded from the construction of the prior density.

Prior for Level Parameters p̃(µ|λI). We use independent normal distributions of the

form µi ∼ N
(
µ
i
, s2
i /λI

)
, i = 1, . . . , n. In the empirical application we set µ

i
to the pre-ELB

sample mean of yi,t computed over the period from 1984:Q1 to 2006:Q4, and si is its sample

standard deviation. The hyperparameter λI scales the prior precision of the µis.

Prior for Contemporaneous Interactions p̃(ψπ, ψz, α
∆
S , βD, γD). We assume that the

underlying parameters are independent:

p̃(ψπ, ψz, α
∆
S , βD, γD) = p̃(ψπ)p̃(ψz)p̃(α

∆
S )p̃(βD)p̃(γD).

The first section of Table 1 summarizes the specification of the baseline prior for the A(1)

coefficients. The distributions are chosen so that the sign restrictions in (24) hold. The

priors for (ψπ, ψz) are broadly in line with priors used in the DSGE model literature.7 The

numerical values for (α∆
S , βD,−γD) are more difficult to interpret. In the Online Appendix

we plot the prior distribution of impulse responses.

Prior for Innovation Variances p̃(
√
Dii|ϑ;λd). We specify a prior for

√
Dii, i = 1, . . . , n.

Starting point is a prior for the Dii elements, which takes the form of an Inverse Gamma

distribution that is parameterized as scaled Inverse χ2 distribution with density

p̃(Dii|Sii, λd) =
[(λd/2)Sii]

λd/2

Γ(λd/2)
D
−λd/2−1
ii exp

{
−(λd/2)SiiD

−1
ii

}
.

7In a DSGE model, the monetary policy rule is typically parameterized in terms of ψπ = (1− ρ)ψ̃π and
ψz = (1− ρ)ψ̃z, where ρ ≈ 0.8 is an interest rate smoothing coefficient.
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Table 1: Baseline Prior Distribution for Various Coefficients

Param. Distr. P(1) P(2)
ψπ Gamma 1.5 0.5
ψz Gamma 0.5 0.25
α∆
S Gamma 1.0 0.7
βD Gamma 1.0 0.7
−γD Gamma 0.25 0.12
ρζ,i Beta 0.75 0.10
ςi InvGamma 0.1 4.0
λφ Beta 0.75 0.10
λ0 Gamma 10.0 5.00
λl Gamma 2.00 1.00

Notes: The table lists marginal distributions. P(1) and P(2) are means and standard deviations for Beta and
Gamma distributions. The Inverse Gamma distribution is parameterized as scaled inverse χ2 distribution
with density p(ς2|s2, ν) ∝ (σ2)−ν/2−1 exp[−νs2/(2σ2)], where P(1) is

√
s2 and P(2) is ν. The density of ς is

obtained by the change of variables σ =
√
σ2. The following hyperparameters are fixed: λI = ∞, λd = 4,

and λ∆ = 16.

The density of
√
Dii is obtained by a change of variable, which adds the Jacobian term

2
√
Dii to the density. Here, λd is a hyperparameter that controls the degrees of freedom of

the scaled Inverse χ2 distribution. We use an estimate of the variance of y′tA(1) to choose

Sii. Specifically, we fit univariate AR(p) models to the series yi,t and let s2
i be the estimated

innovation variance. We use ϑ to generate the A(1) matrix in (23) and define the matrix

S = A(1)′


s2

1 0 0

0 s2
2 0

0 0 s2
3

A(1).

The values Sii correspond to the diagonal elements of S.

Prior for the Stochastic Volatility Processes p̃(ρζ,i)p̃(ςi). We assume that the param-

eters are independently and identically distributed across i. We use a Beta distribution for

ρζ,i and an Inverse Gamma distribution for ςi. The parameterizations of these distributions

are listed in Table 1.

Prior for Policy Rule Coefficients p̃(B·1|D;λφ, λ0, λl). We will now specify a prior for

B·1. Let

B·1|(D,λφ, λ0, λl) ∼ N
(
B·1(λφ), P−1

·1 (λ0, λl)
)
. (28)

We set the prior mean of B11, i.e., the coefficient on Rt−1, equal to B11 = λφ. The prior
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mean for the remaining coefficients is set to zero. The k×k precision matrix P ·1(λ0, λl, λI) is

diagonal. The value associated with the coefficient of the lth lag of variable j is λ0l
λls2

j/D11,

where sj was defined above and D11 is the innovation variance in the interest rate equation.

Here λ0 is a hyperparameter that scales the overall precision of the prior, and λl determines

how quickly the prior variance decays with lag length l. The prior precision of the last

element of B·1 (intercept) is infinite, because we fixed it at zero.8

Prior for Private-Sector Coefficients p̃
(
Φ·i(1)|ϑ,D;λφ, λ0, λl

)
. We will now specify a

prior for the k× 1 column vectors Φ·i(1) that stack the reduced-form coefficients for private-

sector variable i, where i = 2, . . . , n. From (4) we deduce that the reduced-form forecast

errors are given by

u′t = ε′t[A(1)]−1,

where the A(1) matrix is generated from ϑ. The covariance matrix of the forecast errors is

Σ(A,D) = [A(1)]−1′E[εtε
′
t][A(1)]−1 = [A(1)]−1′D[A(1)]−1.

Let

Φ·i(1)
∣∣ (D;λφ, λ0, λl) ∼ N

(
Φ·i(λφ), P−1

i (λ0, λl)
)
, i = 2, . . . , n. (29)

In order to impose the belief that the individual series are well approximated by AR(1)

processes we set the prior mean vector as follows: Φji(λφ) = λφ for j = i – this coefficient

interacts with yi,t−1 – and Φji(λφ) = 0 for j 6= i, where j = 1, . . . , k. The k × k precision

matrix P i(λ0, λl, λI) is diagonal. The value associated with the coefficient of the lth lag

of variable j is λ0l
λls2

j/Σii, where sj was defined above. As before, the hyperparameter λ0

scales the overall precision of the prior, and λl determines how quickly the prior variance

decays with lag length l. The last element, Φki(1), capturing the intercept is fixed at zero.

Prior for Regression Function Differentials p(Φ∆
12). We assume that

Φ∆
12|λ∆ ∼ N

(
0,

1

λ∆

I

)
. (30)

Note that for Φ∆
12 = 0 the regression functions remain unchanged once the economy reaches

the ELB.

8In practice, we are reducing the dimension of P ·1(λ0, λl, λI) to (k − 1)× (k − 1).
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3.3 Adjustments to the Baseline Prior and Hyperparameters

We make two adjustments to the prior p̃(θ|λ) in (27). These adjustments are implemented

as follows:

p(θ|λ) ∝ p̃(θ|λ)fu(θ)fs(θ). (31)

Uniqueness. We enforce the uniqueness restriction in Proposition 1 and define the indicator

function

fu(θ) = I
{

sign
(
B11 − Φ12(1)A21

)
= sign

(
B11 − Φ12(0)A21

)}
.

Stationarity. We impose that the reduced form representation of the SVAR is stationary

conditional on st = 1 and st = 0 for all t, respectively. To do so, we convert the AΦ

representation of the SVAR into the Φ representation in (1) and check that all roots of the

characteristic polynomial I −
∑p

l=1 Φl(s)z
l are outside of the unit circle for s = 1 and s = 0.

Let fs(θ) be the indicator function that is equal to one if the stationarity condition is satisfied

and equal to zero otherwise.

Hyperparameters. We adopt a hierarchical modeling approach and specify a prior for the

hyperparameters as well. Giannone, Lenza, and Primiceri (2015) showed that this approach

leads to a good empirical fit and forecasting performance for Bayesian VARs. Let p̃(λ) be a

properly normalized density. Then we define

p(θ, λ) ∝ p̃(θ|λ)fu(θ)fs(θ)p̃(λ). (32)

Under this construction, the conditional prior distribution remains equal to p(θ|λ), as spec-

ified in (31). The marginal prior of λ is then given by

p(λ) ∝ p̃(λ)

∫
p̃(θ|λ)fu(θ)fs(θ)dθ. (33)

The integral on the right-hand side re-weights the density p̃(λ). This prior specification avoids

having to evaluate the integral as part of the posterior sampling and has the advantage that it

down-weighs values of λ under which the uniqueness and stationarity conditions are violated

with very high probability. Prior distributions for λφ, λ0, and λl are reported in Table 1.

The remaining hyperparameters are fixed at λI =∞ (we are fixing the level parameters µ),

λd = 4, and λ∆ = 16.
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4 Likelihood Function

We now derive the likelihood associated with the SVAR model discussed in Section 2 under

the assumption that the uniqueness condition in Proposition 1 is satisfied. In Section 4.1 we

first discuss how to evaluate the exact likelihood function if the innovations are homoskedas-

tic. In Section 4.2 we show how a particle filter approximation of the likelihood function can

be obtained for the model with heteroskedasticity.

4.1 Homoskedasticity

We factorize the likelihood function as follows

p(Y1:T |θ) =
T∏
t=1

p(y1,t|Y1:t−1, θ)p(y2,t|y1,t, Y1:t−1, θ), (34)

where Yt1:t2 denotes the sequence yt1 , . . . , yt2 .

Parameter Transformations. We begin with several parameter transformations to obtain

the Φ representation of the SVAR. Based on θ we can compute

A·1, A·2(1), B·1, Φ·2(1), Φ∆
12, D.

From A(1) we obtain Φε(1) = [A(1)]−1. This leads to the Φ form for y2,t when st = 1:

y′2,t = x′tΦ·2(1) + ε1,tΦ
ε
12(1) + ε′2,tΦ

ε
22(1). (35)

We proceed by transforming the monetary policy rule so that we obtain the Φ form for y1,t.

Plugging the expression for y2,t in (35) into the monetary policy rule (5) we obtain:

y1,t =
1

A11

[
x′t
(
B·1 − Φ·2(1)A21

)
+ ε1,t

(
1− Φε

12(1)A21

)
− ε′2,tΦε

22(1)A21

]
. (36)

We deduce that

Φ·1(1) =
1

A11

(
B·1 − Φ·2(1)A21

)
, Σ(1) = Φε(1)DΦε′(1). (37)

To obtain the Φ form for st = 0, let Φ12(0) = Φ12(1) + Φ∆
12 and use (16) to compute Φ·2(0)

and Φε
·2(0). Then follow the steps in (35) to (37) to obtain Φ(0) and Σ(0).
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Period-t Densities. We partition the covariance matrix Σ(s) into [Σij(s)] such that the

partitions conform with yt = [y1,t, y
′
2,t]
′ and define

Σ2|1(s) = Σ22(s)− Σ21(s)Σ−1
11 (s)Σ12(s), M12(s) = Σ−1

11 (s)Σ12(s), M21(s) = M ′
12(s).

Moreover, let

u1,t(st) = y1,t − x′tΦ·1(st) u′2,t(st) = y′2,t − x′tΦ·2(st).

The density p(y1,t|·) is obtained as follows. If the conditions in Proposition 1 are satisfied,

then y1,t = −µ1 whenever u1,t(1) ≤ −x′tΦ·1(1)−µ1. Thus, the distribution of y1,t is a mixture

of a pointmass at −µ1 and a continuous distribution with support on (−µ1,∞). We write

its density as

p(y1,t|·) = I{y1,t = −µ1}FN

(
−x

′
tΦ·1(1) + µ1√

Σ11(1)

)
+ I{y1,t > −µ1}pN

(
u1,t(1); 0,Σ11(1)

)
, (38)

where FN(·) is the cumulative distribution function of a N(0, 1) and pN(x;µ,Σ) is the prob-

ability density function of a N(µ,Σ). The derivation of p(y2,t|y1,t, ·) is more tedious and rel-

egated to the Online Appendix. We have to distinguish between y1,t = −µ1 and y1,t > −µ1.

The densities are given by

p(y2,t|y1,t > −µ1, ·) = pN
(
u2,t(1); u1,tM12(1), Σ2|1(1)

)
. (39)

and

p(y2,t|y1,t = −µ1, ·) (40)

= (2π)−(n−1)/2|Σ2|1(0)|−1/2|Σ11(0)|−1/2|V̄u(0)|1/2
[
FN

(
−x

′
tΦ·1(1) + µ1√

Σ11(1)

)]−1

×FN

(
−x

′
tΦ·1(0) + µ1 + M̄u(0)u2,t(0)√

V̄u(0)

)

× exp

{
−1

2
u′2,t(0)Σ−1

2|1(0)u2,t(0) +
1

2
V̄ −1
u (0)[M̄u(0)u2,t(0)]2

}
,

where, suppressing the regime dependence,

M̄u =
M12Σ−1

2|1

M12Σ−1
2|1M21 + Σ−1

11

, V̄u =
(
M12Σ−1

2|1M21 + Σ−1
11

)−1
.
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Expressions (38), (40), and (39) can be plugged into (34) to evaluate the likelihood function.

4.2 Stochastic Volatility

To incorporate stochastic volatility into the analysis we interpret the VAR as a state-space

model with latent volatility states ζt = [ζ1, . . . , ζn]′. Let Yt1:t2 and ζt1:t2 denote the sequences

yt1 , . . . , yt2 and ζt1 , . . . , ζt2 and θ be the vector of model parameters. The joint density of

observations and states is given by

p(Y1:T , ζ1:T |θ) =
T∏
t=1

p(yt|ζt, Y1:t−1θ)p(ζt|ζt−1, θ). (41)

The density p(ζt|ζt−1) is obtained from the laws of motion of the exogenously evolving volatil-

ities in (18). The measurement equation, which depends on the current volatility state ζt

and lags of the observables yt is obtained from the vector autoregressive law of motion of yt.

The likelihood function is obtained by integrating out the sequence ζ1:T from the joint

density of observables and states. We do so sequentially, using a particle filter that approx-

imates:

p(Y1:T |θ) =
T∏
t=1

∫ ∫
p(yt|ζt, Y1:t−1, θ)p(ζt|ζt−1, θ)p(ζt−1|Y1:t−1, θ)dζtdζt−1. (42)

A particle filter represents the density p(ζt|Y1:t, θ) through a swarm of particles {ζjt ,W
j
t }Mj=1

with the property that posterior expectations E[h(ζt)|Y1:t, θ] can be approximated by Monte

Carlo averages of the form 1
M

∑M
j=1 h(ζjt )W

j
t .

We use a simple bootstrap particle filter (BSPF) which was originally proposed by Gordon

and Salmond (1993). In order to convert the time t− 1 particle swarm {ζjt−1,W
j
t−1}Mj=1 into

a time t particle swarm {ζjt ,W
j
t }Mj=1 the BSPF simulates the law-of-motion of the states in

(18) forward by one period for each ζjt−1 to obtain a ζ̃jt . The time t − 1 particle weights

are updated based on p(yt|s̃jt , Y1:t−1, θ), which is identical to the likelihood increment in the

homoskedastic version of the model, except that D needs to be replaced by Dt(ζ̃
j
t ). To avoid

a degeneracy of the particle weights, the particles can be resampled. As a by-product, the

BSPF generates a stochastic approximation of the likelihood function that we denote by

p̂(Y1:T |θ).
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A detailed description of the algorithm based on the exposition in Herbst and Schorfheide

(2015) is provided in the Online Appendix.

4.3 Identification

Based on data exclusively from regime s = 1 our SVAR is only partially identified. First,

the s = 1 regime provides no information about Φ∆
12. Second, the number of free parameters

in the matrices A(1) and D exceed the number of estimable non-redundant reduced-form

covariance parameters in Σ(1). Bayesian inference remains valid, but there exist functions of

model parameters for which the prior distribution is not updated; see, for instance, Poirier

(1998) and Moon and Schorfheide (2012). In turn, a thoughtful specification of the prior dis-

tribution becomes important. The Baumeister and Hamilton (2018)-style prior is formulated

based on a parameterization that facilitates prior elicitation and imposes sign restrictions on

some of the entries in the A(1) matrix which reduces the size of the identified set.

Mavroeidis (2020) formally shows that the transition of the economy into the s = 0

regime generates additional identifying restrictions, which are akin to identification via het-

eroskedasticity and provides an identification analysis for his model specifications. It is

fairly straightforward to demonstrate that our model satisfies a necessary condition for iden-

tification. Consider the following static example: y′tA(s) = εt, where εt ∼ N(0, I) and

our D matrix is absorbed into the definition of A(s). From the s = 1 regime we can

estimate V[y1,t|y1,t > 0], E[y2,t|y1,t], and V[y2,t|y1,t], which in a Gaussian framework with

mean-zero shocks generates the usual (n+1)/2 restrictions. From the s = 0 we can estimate

E[y2,t|y1,t = 0] and V[y2,t|y1,t = 0], leading to an additional (n− 1) + (n− 1)n/2 restrictions.

Whether or not these restrictions are sufficient for identification depends on the number of

additional parameters that characterize the s = 0 distribution. In our model it is n− 1. In

our application n = 3 and one element of A(1) is set to zero. Thus, translated into the static

framework, we have (9− 1) + 2 = 10 unknowns and 6 + 5 = 11 restrictions for identification,

which implies that the necessary condition is satisfied.

5 Posterior Computations via SMC

Because of fairly complicated nonlinear parameter restrictions generated by the piecewise-

linear structure of our SVAR, the posterior distribution of the parameters is non-standard.
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We use a sequential Monte Carlo (SMC) sampler to generate draws from the posterior of θ.

SMC techniques have emerged as an attractive alternative to MCMC methods because they

can be easily parallelized and, properly tuned, may produce more accurate approximations

of posterior distributions than MCMC algorithms.9

SMC combines features of classic importance sampling and modern MCMC techniques.

The starting point is the creation of a sequence of intermediate or bridge distributions

{πn(θ)}Nφn=0 that converge to the target posterior distribution, i.e., πNφ(θ) = π(θ). At any

stage the (intermediate) posterior distribution πn(θ) is represented by a swarm of particles

{θin,W i
n}Ni=1 in the sense that the Monte Carlo average

h̄n,N =
1

N

N∑
i=1

W i
nh(θin)

a.s.−→ Eπn [h(θn)] (43)

as N −→ ∞, for each n = 0, . . . , Nφ. We adopt the convention that the weights W i
n are

normalized to average to one. The bridge distributions are posterior distributions constructed

from stage-n likelihood functions:

πn(θ) =
pn(Y |θ)p(θ)∫
pn(Y |θ)p(θ)dθ

, (44)

with the convention that p0(Y |θ) = 1, i.e., the initial particles are drawn from the prior, and

pNφ(Y |θ) = p(Y |θ). We use likelihood tempering of the form

pn(Y |θ) =
[
p(Y |θ)

]φn
, φn =

(
n

Nφ

)`
. (45)

The tuning parameter ` controls the shape of the tempering schedule.

The SMC algorithm proceeds iteratively from n = 0 to n = Nφ. Starting from stage n−1

particles {θin−1,W
i
n−1}Ni=1, each stage n of the algorithm targets the posterior πn and consists

of three steps: correction, that is, reweighting the stage n− 1 particles to reflect the density

in iteration n; selection, that is, eliminating a highly uneven distribution of particle weights

(degeneracy) by resampling the particles; and mutation, that is, propagating the particles

forward using a Markov transition kernel to adapt the particle values to the stage n bridge

density. Our implementation of the SMC algorithm follows Herbst and Schorfheide (2015)

and is described in detail in the Online Appendix.

9See Liu (2001), Cappé, Moulines, and Ryden (2005), and Herbst and Schorfheide (2015) for textbook
treatments.
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Likelihood values p(Y |θ) are required in the correction and mutation steps. For the

model specification with stochastic volatility the exact likelihood function p(Y |θ) is replaced

by the BSPF approximation p̂(Y |θ) discussed in Section 4.2. In this case, the SMC al-

gorithm turns into an SMC2 algorithm, which has been studied in Chopin, Jacob, and

Papaspiliopoulos (2013). Just like particle MCMC algorithms, the SMC2 algorithm gener-

ates an approximation of the exact posterior p(θ|Y ) ∝ p(Y |θ)p(θ) provided the stochastic

likelihood approximation p̂(Y |θ) is unbiased, which it is for the BSPF.

6 Empirical Analysis

We now estimate a three-variable SVAR on U.S. quarterly data. y1,t is defined as the federal

funds rate and y2,t comprises measures of output gap and inflation. The output gap is defined

as log real GDP minus the log potential output series published by the Congressional Budget

Office. We take inflation to be the year-over-year changes (lnPt − lnPt−4) in the personal

consumption expenditure deflator. The three series are plotted in Figure 1. Because, unlike

in our model, the effective federal funds rate was never exactly equal to zero when the

economy reached the ELB, we set interest rates below 25 basis points (bp) equal to zero.

The ELB episode is indicated by the gray band in the data plot.

The subsequent empirical analysis is based on observations from 1984:Q1 to 2018:Q4.

We use p = 4 lags for the SVAR. The SMC2 algorithm described in Section 5 is used to

generate draws θi, i = 1, . . . , N from the posterior distribution.10 All the results presented

subsequently are based on transformations of these draws. The parameter estimates are

discussed in Section 6.1, the estimated IRFs are presented in Section 6.2, and the implied

shadow rate is discussed in Section 6.3. All credible intervals reported in this section are

90% equal-tail-probability credible intervals.

6.1 Parameter and Volatility Estimates

Setting aside stochastic volatility in the structural innovations, there are two sources of

nonlinearity in our SVAR. First, the interest rate is censored. This means, even if other

variables depend on the interest rate linearly, their dynamics will change nonlinearly as the

10We use N = 10, 000 particles for Algorithm 2 and M = 100 particles for the BSPF Algorithm 1. The
SMC algorithm uses Nφ = 200 stages with shape parameter ` = 2. For the mutation we are using NMH = 3
steps of a single-block MH algorithm.
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Figure 1: Data
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Notes: Grey bands indicate the ELB period from 2009:Q1 to 2015:Q4, during which the federal funds rate
is below 25bp. Vertical lines denote dates for which we compute IRFs, which are 1999:Q1 and 2009:Q1.

interest rate reaches the ELB. Second, we allow for the laws of motion of the private-sector

variables to depend on whether or not the interest rate is at or away from the ELB. This

feature of our SVAR specification captures the potential nonlinearity of agents’ decision

rules in DSGE models with occasionally-binding constraints; see, for instance, ACHSV. The

second nonlinearity is captured by a non-zero Φ∆
12.

Figure 2 shows prior and posterior densities for the two elements of Φ∆
12. The prior
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Figure 2: Kinks in the Regression Functions
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Notes: Marginal prior p(·) (dotted, red) and posterior p(·|Y ) (solid, blue) densities. Panels depict kernel
density estimates constructed from the output of the SMC algorithm.

densities are almost symmetric around zero.11 The posterior densities are clearly more

concentrated than the prior densities. While the posterior for the output gap kink Φ∆
12,1

is centered around zero (the 90% credible interval ranges from -0.16 to 0.12), the posterior

estimate of the inflation kink Φ∆
12,2 is clearly negative. The 90% credible interval ranges from

-0.52 to -0.21. These results suggest that inflation may respond to shocks differently at and

away from the ELB, while output gap responses may be similar.

The third source of nonlinearity in our model comes from the stochastic volatility in the

structural innovations. Figure 3 depicts the filtered volatilities for the three structural shocks,

E[
√
Dii,t|Y1:t, θ

i], computed using 10,000 draws θi from the posterior distribution, with M =

1, 000 particles for each draw. In general, the stochastic volatility is more pronounced for

the monetary policy shock and the supply shock than for the demand shock. During the

Great Recession, volatility increases for all three shocks. The timing, however, differs. The

demand shock volatility increases by more than 50% between 2007:Q3 to 2008:Q2 during the

initial phase of the Great Recession and then peaks in 2008:Q4. The monetary policy shock

volatility doubles in 2008:Q1 and then increases by another 40% in 2008:Q4. The volatility

of the supply shock rises more gradually with a 56% jump in 2008:Q4 and peaks in 2009:Q4.

Finally, in Table 2 we compare the log marginal data densities (MDD) of various model

specifications. Our preferred specification is the VAR(4) with stochastic volatility and non-

zero Φ∆
12. Setting Φ∆

12 = 0 reduces the log MDD by 8. The VAR(4) clearly dominates the

11The adjustments described in Section 3.3 create a slight asymmetry.
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Figure 3: Stochastic Volatility
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VAR(1) specifications. For both the VAR(1) and the VAR(4) the heteroskedastic version of

the model is preferred to the homoskedastic specification.
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Table 2: Marginal Data Densities

Specification MDD
VAR(4), stochastic volatility (benchmark) -303.34
VAR(4), stochastic volatility, Φ∆

12 = 0 -311.34
VAR(4), homoskedastic -322.92
VAR(1), stochastic volatility -310.14
VAR(1), homoskedastic -346.43

6.2 Responses to Shocks

To study the effects of interest-rate censoring and regime-specific coefficients and to document

the parameter uncertainty, we consider three types of impulse responses. First, we fix the

SVAR parameters at their posterior mean values and assume that the regime s persists

forever. Second, we keep the parameters fixed at the posterior mean, but we allow the st

regime and hence the coefficients of the AΦ representation to switch endogenously. Third,

we generate bands that reflect parameter uncertainty.

In a nonlinear model like ours, IRFs depend on lagged endogenous variables (and thus

the date the shock hits), the size of the shock and, related, the level of volatility of the

shocks for the duration of the impulse response. For all IRFs, we condition on two specific

dates: 1999:Q1 and 2009:Q1. These dates are indicated by the vertical lines in Figure 1. In

1999:Q1 output gap is positive, inflation is low, and the economy is far away from the ELB.

In 2009:Q1 the economy is in the midst of the Great Recession with a large negative output

gap, below-mean inflation, and interest rates at the ELB.

For all IRFs we hold the level of volatility of the structural shocks constant throughout

at the filtered value as measured on the date the initial shock hits the economy. Finally,

we calibrate the size of the shocks as follows. First, we compute responses to minus-two-

standard-deviation shocks for 1999:Q1. Second, we scale the shocks for 2009:Q1 to make the

IRFs comparable across the two dates. The monetary policy shock is scaled so that the initial

response of the shadow rate y∗1,t in 2009:Q1 is the same as the one for 1999:Q1. Demand

and supply shocks are normalized such that the maximum absolute output responses are

identical in 1999:Q1 and 2009:Q1.12

12 This leads to the following scaling: all shocks are -2 standard deviations in s = 1 (1999:Q1) while in
s = 0 (2009:Q1) we have -1.17 standard deviations for the monetary policy shock, -1.94 standard deviations
for the demand shock and -0.99 standard deviations for the supply shock.
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Fixed-Regime Impulse Responses. In Figure 4 we examine IRFs that are computed

under the assumption that the regime st ∈ {0, 1} is fixed, where as we explained above we

use 1999:Q1 and 2009:Q1 as representative dates for s = 1 and s = 0, respectively. This

experiment can be interpreted as follows: the initial level y∗1,t is either so far above or below

the censoring point −µ1, that the regime does not change for the next h periods in a forward

simulation. We also fix the parameter vector θ at its posterior mean θ̄.

For the s = 0 regime, we generate impulse responses under two sets of regression func-

tions: (i) the estimated regression functions and (ii) the s = 1 regression functions obtained

by setting Φ∆
12 = 0. In the graph, the former are labeled “s = 0” whereas the latter are

labeled “s = 0 (linear).” We use the same scaling of shocks for these two sets of responses.

A comparison between s = 1 and s = 0 (linear) highlights the effect of the interest-rate

censoring at the ELB, whereas a comparison between s = 0 (linear) and s = 0 sheds light

on the effect of the kink in the regression functions generated by the estimated Φ∆
12.

The blue lines in Figure 4 correspond to the s = 1 responses, and are computed from

the implied estimates of Φ(1) and Φε(1). In response to a 36 basis point (bp) expansionary

monetary policy shock the output gap rises by 29 bp and y-o-y inflation increases by 9 bp.

The negative demand shock lowers the output gap by 51 bp and inflation by 24 bp at its

trough. In response to the fall in output and inflation, the central bank lowers nominal

interest rates. The interest rate response is hump shaped and bottoms out at roughly -140

bp. The negative supply shock triggers a negative hump-shaped output-gap response with

a trough at -18 bp and a 94 bp rise in inflation. The large increase in inflation leads the

central bank to raise the nominal interest rate.

We now turn to the s = 0 (linear) responses (green) that solely capture the effect of cen-

soring at the ELB. By construction, the interest rate does not react to the shocks. Nonethe-

less, our model generates movements in output and inflation to the monetary policy shock,

which can be interpreted as responses to changes in the shadow rate or the effects of uncon-

ventional monetary policy. Mechanically, these responses are generated by the vector Φε
12(st)

in (9). This vector is obtained for s = 0 from the system of equations that link the s = 0

regression functions to the s = 1 regression functions; see (16).13

The s = 0 (linear) responses of the output gap and inflation to a monetary policy

shock are somewhat larger than s = 1 responses, but very similar in shape to the non-ELB

responses. Allowing for an estimated Φ∆
12 = 0 essentially does not change the responses

13DSGE model solutions have the same feature: the monetary policy shock is a state variable and has an
influence on decisions, regardless of whether or not the interest rate moves.
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Figure 4: Responses to Negative Scaled Shocks with Fixed Regimes
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Notes: The IRFs are computed by holding the regime st fixed. The blue lines represent the IRFs under the
s = 1 regime (no censoring); the red lines are IRFs for the s = 0 regime (censoring and estimated value of
Φ∆

12); the green lines are IRFs for the s = 0 regime with Φ∆
12 = 0. The shocks are -2 standard deviation for

the s = 1 regime and they are scaled for the s = 0 regime (see Footnote 12).

to a monetary policy shock. The responses to a supply shock are also very similar under

the three scenarios. Only the inflation response to a demand shock exhibits substantial
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differences across regimes. Under the s = 1 regime inflation falls drastically, reaching a

trough of -24 bp, whereas under the s = 0 regime inflation rises by 7 bp and continues to

increase to 13 bp before it converges back to zero. s = 0 (linear) is an intermediate case in

which inflation initially drops by 18 bp but then jumps to 5 bp before converging to zero in

the long-run.14

Ball and Mazumder (2011) and Hall (2011) pointed out that during the Great Recession

inflation did not fall despite a large drop in output (gap), indicating a change in the positive

relationship between the two variables implied by the Phillips curve. This observation was

dubbed the missing deflation puzzle. Conditional on the posterior mean estimate θ̄ we

computed estimates of the structural shocks (plotted in the Online Appendix). From 2008:Q4

to 2009:Q3 the demand shocks are estimated to be negative, depressing output. If the ELB

regime parameters equaled their non-ELB regime counterparts, these shocks would have

implied a substantial drop in inflation, just like a conventional Phillips curve, which did not

happen. The model reconciles the empirical observation with a negative estimate of Φ∆
12,2

for inflation, which in turn delivers a rise in inflation in response to the demand shock in the

ELB regime.

Impulse Responses With Regime Shifts. We continue to keep the parameter vector θ

fixed at its posterior mean θ̄, but we now allow for the regime st to evolve over the impulse

response as the economy goes in and out of the ELB. Doing so requires simulations because

different realizations of the structural shocks may lead to different paths for the economy,

including differences in when it is at or away from the ELB. Using t+1 to denote the date the

shock hits the economy, starting from the initial condition xt+1, we iterate the SVAR forward

to obtain two different paths for the endogenous variables. Along the baseline trajectory, in

simulation j, we draw all innovations εj,0i,t+h from their respective N(0, Dii,t+1) distributions,

not varying volatility with horizon h. We denote the resulting series yj,0t+1:t+H . To generate

the shocked path yj,1t+1:t+H , we set εj,11,t+1 = εj,01,t+1 + δ and let εj,1i,t+h = εj,0i,t+1 for all other (i, h).

Here δ is the size of the shock as calibrated earlier. The impulse response is defined as

the difference between the shocked and the baseline path. The simulation is repeated for

j = 1, . . . ,M where we use M = 10, 000.

In the top three rows of Figure 5 we plot the distribution of yj,1t+1:t+H − y
j,0
t+1:t+H across

j. The bands depict 90% credible intervals and the solid lines are means. In the absence

of the nonlinearities triggered by the interest rate reaching the ELB, the bands collapse to

14The sign reversal of the inflation response relative to the s = 1 regime is also visible in the DSGE model
based IRFs reported in Figure 5 of Aruoba, Cuba-Borda, and Schorfheide (2018).
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Figure 5: Responses in 1999:Q1 and 2009:Q1: Flexible Regimes and Shock Uncertainty
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Notes: The top three panels show the distribution of the difference between a simulated baseline trajectory
and a trajectory in which a scaled shock is subtracted from the simulated monetary policy / demand /
supply shock in the initial period. See Footnote 12 for the scaling of the IRFs. The bottom panels show the
level of the interest rate under the “shocked” trajectory. Bands represent 90% credible intervals and solid
lines are means across M = 10, 000 simulated paths.

a single line. The bottom panel of Figure 5 shows bands for the interest rate path along

the “shocked” trajectories. Each time a trajectory j hits the ELB for the first time, the
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difference between the shocked path and the baseline path will start to deviate from the

fixed-regime s = 1 IRF. Once a sufficiently large number of trajectories have hit the ELB,

the response bands will start to fan out. Because of this cumulative effect, it is not necessary

that the fanning out of the response bands coincides with the 5% quantiles of the interest

rate distributions (represented by the lower bounds of the shaded bands in the last row of

Figure 5) reaching zero.

Qualitatively and quantitatively, the 1999:Q1 and 2009:Q1 responses look very similar

to the s = 1 and s = 0 responses in Figure 4, respectively. All of the 1999:Q1 responses

start out as single lines because initially the ELB is irrelevant. Some of the responses,

in particular those to a demand shock, fan out after 25 to 50 periods. This means that

there are a substantial number of trajectories along which interest rates are strictly positive

(s = 1) under the baseline scenario, but hit the ELB (s = 0) at least once under the shocked

scenario. Along these trajectories, the interest rate response reverts more quickly back to

zero (because the interest rate drop is constrained by the ELB), and so do the output gap

and inflation responses. Visually, in Figure 5 the response along the far end (away from the

average response) of the blue bands starts to look more similar to the mean response under

the 2009:Q1 initial conditions.

The bands associated with the 2009:Q1 IRFs fan out earlier and are typically wider

than the ones for the 1999:Q1 responses because near the ELB the probability that the

regimes along the shocked and unshocked trajectories differ is larger. Compared to the

s = 0 responses in Figure 4 the 2009:Q1 IRFs are slightly tilted toward the s = 1 responses

because under some of the simulated trajectories, the economy quickly moves away from the

ELB. More generally, IRFs for other dates will be somewhere in between the 1999:Q1 and

2009:Q1 responses, depending on how close the shadow rate is to the ELB.

Parameter Uncertainty. We will now explore the posterior uncertainty associated with the

IRFs. The bands reported in Figure 6 represent 90% credible intervals that reflect posterior

parameter uncertainty, in addition to the regime uncertainty we explored in Figure 5. The

solid lines are pointwise medians of the impulse response posteriors. As in the previous figure,

we compare responses based on the 1999:Q1 (blue) and 2009:Q1 (red) initial conditions.

Figure 6 is generated by converting 10,000 draws θi from the posterior distribution into mean

responses (each computed over 1, 000 simulations) to the three structural shocks depicted as

solid lines in Figure 5.15

15A comparison of prior and posterior impulse response bands is provided in the Online Appendix. The
prior bands are substantially wider than the posterior bands indicating that the sample is informative about
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Figure 6: Responses in 1999:Q1 and 2009:Q1: Flexible Regimes and Parameter Uncertainty
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Notes: See Footnote 12 for the scaling of the IRFs. Bands represent 90% credible intervals and solid lines
are pointwise posterior medians.

A comparison of the 1999:Q1 and 2009:Q1 bands sheds more light on the question whether

the propagation of shocks is different at the ELB. In regard to interest rate responses, the

the propagation of shocks. Compared to the set-identified setting in BH, the ELB regime provides additional
identifying information in our analysis.
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answer is a trivial yes, because it is directly constrained by the ELB. More interesting is

the comparison for output gap and inflation. Consistent with the insignificant estimate of

Φ∆
12,1 for the output gap equation reported in Figure 2, we see that the output gap impulse

response bands overlap for the two sets of initial conditions. Despite the overlap, the output

gap response to the monetary policy shock appears to be slightly stronger when the economy

is at the ELB. Figure 6 also reveals that there is a lot of parameter uncertainty regarding

the output gap responses to a supply shock.

The inflation responses to a demand shock and a monetary policy shock, on the other

hand, show some differences. This difference is most pronounced for the demand shock

where the bands do not overlap for the first three years following the shock. While for

1999:Q1 the credible band for the inflation response is located below zero, for 2009:Q1 the

inflation response is positive with high probability. As for the monetary policy shock, the

unconventional expansionary monetary policy intervention at the ELB in 2009:Q1 is more

inflationary on impact than away from the ELB in 1999:Q1, but the bands start to overlap

in the subsequent periods.

Comparison to the Literature. To sum up our headline results, we find that (i) a

negative monetary policy shock that creates the same size response in the shadow rate, is

more inflationary at the ELB on impact and also generates a slightly larger response of the

output gap. (ii) Negative demand shocks cause inflation to fall when the ELB is non-binding.

At the ELB, on the other hand, the inflation response to a negative demand shock is positive.

This difference persists for about three years. (iii) The output gap responses for demand

and supply shocks do not significantly differ at and away from the ELB.

The papers by Ikeda, Li, Mavroeidis, and Zanetti (2020) and Johannsen and Mertens

(2021) focus on differences in the effectiveness of monetary policy at and away from the ELB.

Johannsen and Mertens (2021) find that monetary accommodation during the Great Reces-

sion would have provided more stimulus than at other times. Our results are qualitatively

consistent with this finding: the output gap response is larger at the ELB relative to the

response away from the ELB, though the credible sets overlap. Ikeda, Li, Mavroeidis, and

Zanetti (2020) use a censored SVAR similar to the one in Mavroeidis (2020) and study the

hypothesis of empirical irrelevance of the ELB using data from the U.S. and Japan. Their

results show a similar inflation response to monetary policy on impact but a larger response

at the ELB after two quarters and beyond, which is qualitatively similar to our results.

Unlike us, they find a slight dampening instead of amplification of the output gap response.

At the end, just as we do, they reject the irrelevance hypothesis.
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Our results (i) and (ii) are in contrast to the results from time-varying coefficient VARs

presented in Debortoli, Gaĺı, and Gambetti (2019). They do not find discernible differences

between responses to a variety of shocks at and away from the ELB, which leads them

to conclude that the ELB is empirically irrelevant. The densely parameterized and set-

identified TVC-SVAR of Debortoli, Gaĺı, and Gambetti (2019) makes it difficult to detect

changes in the propagation of shocks based on a relatively short sample of ELB observations.

We use more identifying information and only a small number of additional parameters to

characterize the dynamics in the ELB regime. Thus, our approach is better equipped to

detect differences in IRFs. All in all, we conclude that, as predicted by DSGE models with

an ELB constraint, the ELB is not irrelevant for the propagation of shocks and this effect is

measurable in a parsimonious SVAR framework that allows for changes in the private-sector

behavior at the ELB.

6.3 Shadow Rate

Our model allows us to generate a shadow rate. It is given by an estimate of the latent

variable y∗1,t, which can then be adjusted to undo the effect of our re-centering: ỹ∗1,t = y∗1,t+µ1.

In the Online Appendix we provide a formula for p(y∗1,t|y1,t = −µ1, y2,t, xt, θ). Because in

our SVAR xt depends on y1,t−1:t−p instead of y∗1,t−1:t−p inference on the shadow rate is static

and does not require dynamic filtering and smoothing. The posterior median estimate,

60% and 90% bands of the model-implied distribution of the shadow rate are plotted in

Figure 7. The bands reflect uncertainty about the parameters θ and the shocks conditional

on (y1,t = −µ1, y2,t, xt, θ). For each parameter draw θ we condition on the mean (filtered)

volatility estimate, which is allowed to vary over time. The inference exploits the correlation

structure implied by Φ(0) and Σ(0) between interest rates, on the one hand, and output gap

and inflation on the other hand.

The estimated shadow rate drops to -2% in 2009 during the first large scale asset purchase

intervention (QE1) of the Federal Reserve. From 2010 to 2015, during QE2, Operation Twist,

and QE3 it hovered around -0.5%. This shows that the Federal Reserve was particularly

aggressive in providing monetary stimulus in 2009 and reverted to a lesser but consistent

stimulus for the rest of the ELB episode. It is also noteworthy that the slope of the shadow

rate in early 2009 closely matches the slope in the federal funds rate just prior to the start

of the ELB episode.
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Figure 7: Shadow Rate
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Notes: Blue line outside of the ELB episode: federal funds rate. During the ELB episode: 60% (green shade)
and 90% (blue shade) credible intervals. Black line is Wu-Xia shadow rate and red line is the desired interest
rate from the DSGE model of Aruoba, Cuba-Borda, and Schorfheide (2018). The solid vertical line denotes
September 2008. The yellow shading indicates the quarters when the particular Fed program was active.
During the green shaded area, both Operation Twist and QE3 were active. The dashed-dotted vertical line
shows January 2012, when the formal inflation target was announced. The dashed vertical line shows the
“taper tantrum” episode in June 2013.

Qualitatively, the time path of the shadow rate is consistent with the time path of the

desired interest rate (red solid line) estimated with a small-scale New Keynesian DSGE

in Aruoba, Cuba-Borda, and Schorfheide (2018). Quantitatively, the trough in the DSGE

model implied shadow rate occurred about six months after the trough in the SVAR based

shadow rate. Johannsen and Mertens (2021) produced a shadow rate based on their censored

unobserved component model. Their shadow rate (not shown in the figure) is relatively flat

at about -1% throughout the ELB episode and quite similar to our rate from 2010 onwards.

Finally, we provide a comparison with the yield-curve based shadow rate of Wu and Xia

(2016). The Wu-Xia rate, rather than being based on a censored interest-rate feedback rule,

is based on a censored affine term structure model and extracts information from yields

on medium- and long-term bonds. Their shadow rate troughs in 2014, about five years
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after the end of the Great Recession, about a year prior to the lift-off from the ELB. We

find this somewhat implausible in view of the narrative evidence that the most significant

interventions happened during and right after the Great Recession - which is consistent with

our SVAR based estimates.16

7 Conclusion

We developed a structural VAR in which an occasionally-binding constraint generates cen-

soring of one of the dependent variables. Once the censoring mechanism is triggered, we

allow some of the coefficients for the remaining variables to change. By imposing that the

regression functions are continuous at the censoring point, we can show that some mild

parameter restrictions deliver a unique reduced form. The resulting model is more parsimo-

nious than a time-varying-coefficient VAR and the switch in parameter values is tied to the

censoring mechanism, which in our application is the ELB on nominal interest rates. An

application to U.S. data provided evidence of a shift of parameters in the inflation equation

which creates a more inflationary response to an expansionary monetary policy shock and a

positive inflation response to a contractionary demand shock at the ELB.
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A Proofs and Theoretical Derivations

A.1 Proof of Proposition 1

Lemma 1 Consider a function f(x) = α0 + α1x and let

g(x) = f(x) + γ0 + γ1x.

Suppose that α1 6= 0 and either γ0 6= 0 or γ1 6= 0, then the set{
x ∈ R

∣∣ sign(g(x)) 6= sign(f(x))

}
has non-zero Lebesgue measure.

Proof of Lemma 1. Suppose that α1 > 0. Then,

f(x) > 0 =⇒ α0 + α1x > 0 =⇒ x > −α0

α1

.

We now distinguish two cases. (i) Suppose that (α1 + γ1) > 0. Then,

g(x) > 0 =⇒ (α0 + γ0) + (α1 + γ1)x > 0 =⇒ x > −α0 + γ0

α1 + γ1

.

Thus,

sign(g(x)) 6= sign(f(x))

on the interval (
min

{
−α0

α1

, −α0 + γ0

α1 + γ1

}
, max

{
−α0

α1

, −α0 + γ0

α1 + γ1

})
. (A.1)

(ii) Suppose that (α1 + γ1) < 0. Then,

g(x) > 0 =⇒ (α0 + γ0) + (α1 + γ1)x > 0 =⇒ x < −α0 + γ0

α1 + γ1

.

Thus,

sign(g(x)) 6= sign(f(x))
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on the set (
−∞, min

{
−α0

α1

, −α0 + γ0

α1 + γ1

})⋃(
max

{
−α0

α1

, −α0 + γ0

α1 + γ1

}
, ∞

)
. (A.2)

The sets in (A.1) and (A.2) have non-zero Lebesgue measure. A similar calculation can be

done for a1 < 0 to complete the proof of the lemma. �

We now proceed with the proof of Proposition 1.

Preliminaries. We will drop the time subscripts. Because of the linearity of the s = 0 and

s = 1 regression functions, the functions x′Φ·1(s = 0)+u1(s = 0, ε) and x′Φ·1(s = 1)+u1(s =

1, ε) are continuous in (x, ε). We regard x as predetermined. We begin with some algebraic

manipulations. Recall that the shadow rate is equal to zero in the regimes s = 0 and s = 1

if, respectively,

x′Φ·1(0) + u1(0, ε) = −µ1 and x′Φ·1(1) + u1(1, ε) = −µ1. (A.3)

Thus, we define the distance from the threshold value −µ1 as

∆(s, x, ε) = x′Φ·1(s) + u1(s, ε) + µ1 (A.4)

=
1

A11

[
x1

(
B11 − Φ12(s)A21

)
+ x′2

(
B21 − Φ22(s)A21

)]
+

1

A11

[
ε1
(
1− Φε

12(s)A21

)
− ε′2Φε

22(s)A21

]
+ µ1

=
1

A11

∆x(s, x) +
1

A11

∆e(s, ε) + µ1.

We will begin by deriving a convenient relationship between ∆(1, x, ε) and ∆(0, x, ε).

In order to capture potential discontinuities in the piecewise linear regression functions we

introduce discrepancies Λ and let

Φj2(0) = Φj2(1) +
Bj1 − Φj2(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λj2, j = 2, . . . , k − 1, (A.5)

Φk2(0) = Φk2(1) +
Bk1 − Φk2(1)A21 + µ1A11

B11 − Φ12(1)A21

Φ∆
12 + Λk2,

Φε
12(0) = Φε

12(1) +
1− Φε

12(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λε

12,

Φε
22(0) = Φε

22(1)− Φε
22(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λε

22.
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Using this notation, ∆x(0, x) can be written as

∆x(0, x) = x1

(
B11 − Φ12(0)A21

)
+ x′2

(
B21 − Φ22(0)A21

)
(A.6)

= x1

(
B11 − Φ12(0)A21

)
+

k−1∑
j=2

xj

(
Bj1 −

[
Φj2(1) +

Bj,1 − Φj2(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λj2

]
A21

)
+

(
Bk1 −

[
Φk2(1) +

Bk1 − Φk2(1)A21 + µ1A11

B11 − Φ12(1)A21

Φ∆
12 + Λk2

]
A21

)
= x1

(
B11 − (Φ12(1) + Φ∆

12)A21

)
+ x′2

(
B21 − Φ22(1)A21

)
−x′2

[
B21 − Φ22(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λ22

]
A21 −

µ1A11

B11 − Φ12(1)A21

Φ∆
12A21,

where the second equality uses (A.5). The last equality, in slight abuse of notation, we let

x′2 be the row vector with elements xj, B21 be the column vector with elements Bj1, Φ22 be

the matrix with rows Φj2, and Λ22 be the matrix with rows Λj2 for j = 2, . . . , k. Using the

definition

∆x(1, x) = x1

(
B11 − Φ12(1)A21

)
+ x′2

(
B21 − Φ22(1)A21

)
we can rewrite (A.6) as follows:

∆x(0, x) = ∆x(1, x)− x1Φ∆
12A21 − x′2

[
B21 − Φ22(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λ22

]
A21 (A.7)

− µ1A11

B11 − Φ12(1)A21

Φ∆
12A21

= ∆x(1, x)− x1
B11 − Φ12(1)A21

B11 − Φ12(1)A21

Φ∆
12A21 − x′2

[
B21 − Φ22(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λ22

]
A21

− µ1A11

B11 − Φ12(1)A21

Φ∆
12A21

= ∆x(1, x)−
(
x1

(
B11 − Φ12(1)A21

)
+ x′2

(
B21 − Φ22(1)A21

)) Φ∆
12A21

B11 − Φ12(1)A21

−x′2Λ22A21 −
µ1A11

B11 − Φ12(1)A21

Φ∆
12A21

= ∆x(1, x)

(
1− Φ∆

12A21

B11 − Φ12(1)A21

)
− x′2Λ22A21 −

µ1A11

B11 − Φ12(1)A21

Φ∆
12A21.
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Similarly, we can derive a relationship between ∆e(0, ε) and ∆e(1, ε):

∆e(0, ε) ≡ ε1
(
1− Φε

12(0)A21

)
− ε′2Φε

22(0)A21 (A.8)

= ε1

(
1−

(
Φε

12(1) +
1− Φε

12(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λε

12

)
A21

)
−ε′2

(
Φε

22(1)− Φε
22(1)A21

B11 − Φ12(1)A21

Φ∆
12 + Λε

22

)
A21

= ε1(1− Φε
12(1)A21)− ε′2Φε

22(1)A21

−ε1
1− Φε

12(1)A21

B11 − Φ12(1)A21

Φ∆
12A21 + ε′2

Φε
22(1)A21

B11 − Φ12(1)A21

Φ∆
12A21 − (ε1Λε

12 + ε′2Λε
22)A21

= ∆e(1, ε)−
(
ε1
(
1− Φε

12(1)A21

)
− ε′2Φε

22(1)A21

)
Φ∆

12A21

B11 − Φ12(1)A21

− (ε1Λε
12 + ε′2Λε

22)A21

= ∆e(1, ε)

(
1− Φ∆

12A21

B11 − Φ12(1)A21

)
− (ε1Λε

12 + ε′2Λε
22)A21.

Combining (A.7) and (A.8) we get

∆(0, x, ε) =
1

A11

(
∆x(1, x) + ∆e(1, ε)

)(
1− Φ∆

12A21

B11 − Φ12(1)A21

)
− µ1

B11 − Φ12(1)A21

Φ∆
12A21

− 1

A11

(x′2Λ22 + ε1Λε
12 + ε′2Λε

22)A21 + µ1 (A.9)

=

(
1

A11

∆x(1, x) +
1

A11

∆e(1, ε) + µ1

)(
1− Φ∆

12A21

B11 − Φ12(1)A21

)
− 1

A11

(x′Λ22 + ε1Λε
12 + ε′2Λε

22)A21.

Because ∆(1, x, ε) is defined as

∆(1, x, ε) =
1

A11

∆x(1, x) +
1

A11

∆e(1, ε) + µ1

we obtain

∆(0, x, ε) = ∆(1, x, ε)

[
1− Φ∆

12A21

B11 − Φ12(1)A21

]
− 1

A11

(x′2Λ22 + ε1Λε
12 + ε′2Λε

22)A21. (A.10)

Proof of Part (i). A necessary condition for uniqueness given (x, ε) is

x′Φ·1(1) + u1(1, ε) + µ1 > 0 implies x′Φ·1(0) + u1(0, ε) + µ1 > 0

x′Φ·1(0) + u1(0, ε) + µ1 < 0 implies x′Φ·1(1) + u1(1, ε) + µ1 < 0.
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We will assume that A11 > 0 (otherwise inequalities will be reversed). We can write the

condition more compactly as

sign
(
∆(1, x, ε)

)
= sign

(
∆(0, x, ε)

)
. (A.11)

Let x = x̃, partition ε = [εj, ε(−j)], and let ε(−j) = ε̃(−j). Notice that ∆(s, x̃, [εj, ε̃(−j)]) is a

linear function of εj. Thus, we can define α0(·) and α1 such that

f(εj) =

[
1− Φ∆

12A21

B11 − Φ12(1)A21

]
∆(1, x̃, [εj, ε̃(−j)]) = α0(x̃, ε̃(−j)) + α1εj.

Moreover, we can define γ0(·) and γ1 such that

− 1

A11

(
x̃′2Λ22 + ε1([εj, ε̃(−j)])Λ

ε
12 + ε′2([εj, ε̃(−j)])Λ

ε
22

)
A21 = γ0((x̃, ε̃(−j))) + γ1εj.

We can now choose j such that α1 6= 0 and a pair (x̃, ε̃(−j)) such that either γ0 6= 0 or γ1 6= 0.

Part (i) of the proposition now follows from Lemma 1. �

Proof of Part (ii). Given x, let E0(x) denote the set of innovations for which the ELB

becomes binding. Thus, for any ε ∈ E0(x)

x′Φ·1(0) + u1(0, ε) = −µ1 and x′Φ·1(1) + u1(1, ε) = −µ1,

which implies that

∆(0, x, ε) = ∆(1, x, ε) = 0.

Now consider ε 6∈ E0(x). Setting the Λ terms in (A.10) to zero, we obtain

∆(0, x, ε) = ∆(1, x, ε)

[
1− Φ∆

12A21

B11 − Φ12(1)A21

]
. (A.12)

Note that (A.11) is satisfied for every (x, ε) if and only if

1− Φ∆
12A21

B11 − Φ12(1)A21

> 0. (A.13)
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Using the definition Φ∆
12 = Φ0

12 − Φ1
12 we can manipulate this condition as follows:

B11 − Φ12(1)A21 − Φ∆
12A21

B11 − Φ12(1)A21

> 0

=⇒ B11 − Φ12(0)A21

B11 − Φ12(1)A21

> 0

=⇒ sign(B11 − Φ12(0)A21) = sign(B11 − Φ12(1)A21), (A.14)

which yields the expressions in the statement in Part (ii). �

A.2 Proof of Proposition 2

We drop the t subscripts throughout.

Proof of Part (i). We combine the A-representation of the monetary policy rule (7) and

the A-representation of the private sector equations (17) to derive the Φ representation of

the private sector equations and compare it with (9). Solve (7) for y∗1

y∗1 =
1

A11

(
x′B·1 + ε1 − y′2A21

)
. (A.15)

Combining (17) and (A.15) yields

1

A11

(
x′B·1 + ε1 − y′2A21

)
A12(s) + y′2A22 = x′B·2(s) + ε′2.

Re-arranging terms yields

y′2

(
A22 −

A21A12(s)

A11

)
= x′

(
B·2(s)−B·1

A12(s)

A11

)
− ε1

A12(s)

A11

+ ε′2.

Finally, we can solve for y′2 to obtain

y′2 = x′
(
B·2(s)−B·1

A12(s)

A11

)(
A22 −

A21A12(s)

A11

)−1

(A.16)

−ε1
A12(s)

A11

(
A22 −

A21A12(s)

A11

)−1

+ ε′2

(
A22 −

A21A12(s)

A11

)−1

.

This generates, in our notation, the matrices

Φ·2(s), Φε
12(s), Φε

22(s). (A.17)
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Statement (i) of the proposition follows by noting thatM(Φ·2(s),Φε
·2(s)) has (n−1)×(k+n)

free Φ coefficients in regimes s = 0 and s = 1. M(A12(s)) has (n−1)×k+n2 free Φ coefficients

in the s = 1 regime, but only n− 1 additional unrestricted coefficients in the s = 0 regime.

�

Proof of Part (ii). We will show that MPLC(Φ·2(s),Φε
·2(s)) ⊇M(A12(s)) and

MPLC(Φ·2(s),Φε
·2(s)) ⊆M(A12(s)).

Step 1: MPLC(Φ·2(s),Φε
·2(s)) ⊇ M(A12(s)). We show that the (Φ·2(s),Φε

·2(s)) regression

functions implied byM(A12(s)) specifications are continuous at points in the state-space in

which the economy hits the ELB. We deduce from (7) and (17) that interest rates hit the

ELB when

−µ1A11 + y′2A21 = x′B·1 + ε1

−µ1A12(1) + y′2A22 = x′B·2(1) + ε′2.

The second equation implies that

y′2 =
(
µ1A12(1) + x′B·2(1) + ε′2

)
A−1

22 .

Thus, we obtain that the ELB is reached when

−µ1A11 +
(
µ1A12(1) + x′B·2(1) + ε′2

)
A−1

22 A21 = x′B·1 + ε1,

or

ε1 = −µ1A11 +
(
µ1A12(1) + x′B·2(1) + ε′2

)
A−1

22 A21 − x′B·1. (A.18)

= µ1(−A11 + A12(1)A−1
22 A21) + ε′2A

−1
22 A21 + x′(−B·1 +B·2(1)A−1

22 A21).

Note that unlike in the main paper, here we solved for ε1 instead of x1.

Using the Φ(s) matrices implied by the A(s) representation from (A.16), the continuity
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requirement for the Φ(s) regression functions can be stated as

0 = x′
(
B·2(0)−B·1

A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

(A.19)

−ε1
A12(0)

A11

(
A22 −

A21A12(0)

A11

)−1

+ ε′2

(
A22 −

A21A12(0)

A11

)−1

−x′
(
B·2(1)−B·1

A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

+ε1
A12(1)

A11

(
A22 −

A21A12(1)

A11

)−1

− ε′2
(
A22 −

A21A12(1)

A11

)−1

,

for all (x, ε1, ε2) such that (A.18) is satisfied.

After plugging (A.18) into (A.19) to eliminate ε1, the coefficients on ε′2 are(
A22 −

A21A12(0)

A11

)−1

−
(
A22 −

A21A12(1)

A11

)−1

(A.20)

−A−1
22 A21

A12(0)

A11

(
A22 −

A21A12(0)

A11

)−1

+ A−1
22 A21

A12(1)

A11

(
A22 −

A21A12(1)

A11

)−1

= A−1
22 − A−1

22 = 0.

Recall that

B·2(s) =
[
B12| . . . |B(k−1)2|Bk2(s)

]
, Bk2(s) =

{
0 if s = 1

µ1(A12(1)− A12(0)) if s = 0
.

Using the fact that Bj2, j = 1, . . . , k − 1, is not state dependent, the coefficients on xj,
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j = 1, . . . , k − 1 are(
Bj2 −Bj1

A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−
(
Bj2 −Bj1

A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

−(−Bj1 +Bj2A
−1
22 A21)

A12(0)

A11

(
A22 −

A21A12(0)

A11

)−1

+(−Bj1 +Bj2A
−1
22 A21)

A12(1)

A11

(
A22 −

A21A12(1)

A11

)−1

(A.21)

=

(
Bj2 −Bj1

A12(0)

A11

− (−Bj1 +Bj2A
−1
22 A21)

A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−
(
Bj2 −Bj1

A12(1)

A11

+ (−Bj1 +Bj2A
−1
22 A21)

A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

=

(
Bj2 −Bj2A

−1
22 A21

A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−
(
Bj2 +Bj2A

−1
22 A21

A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

= Bj2A
−1
22 −Bj2A

−1
22 = 0.
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We now turn to xk = 1 and will use that Bk2(1) = 0 and Bk2(0) = µ1(A12(1)− A12(0)).(
µ1(A12(1)− A12(0))−Bk1

A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−
(

0−Bk1
A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

−(−Bk1 + 0)
A12(0)

A11

(
A22 −

A21A12(0)

A11

)−1

+ (−Bk1 + 0)
A12(1)

A11

(
A22 −

A21A12(1)

A11

)−1

−µ1(−A11 + A12(1)A−1
22 A21)

A12(0)

A11

(
A22 −

A21A12(0)

A11

)−1

+µ1(−A11 + A12(1)A−1
22 A21)

A12(1)

A11

(
A22 −

A21A12(1)

A11

)−1

= µ1(A12(1)− A12(0))

(
A22 −

A21A12(0)

A11

)−1

+µ1(A11 − A12(1)A−1
22 A21)

A12(0)

A11

(
A22 −

A21A12(0)

A11

)−1

−µ1(A11 − A12(1)A−1
22 A21)

A12(1)

A11

(
A22 −

A21A12(1)

A11

)−1

= µ1(A12(1)− A12(0))

(
A22 −

A21A12(0)

A11

)−1

+µ1

(
A12(0)− A12(1)A−1

22

A21A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−µ1

(
A12(1)− A12(1)A−1

22

A21A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

= µ1

(
A12(1)A−1

22 A22 − A12(1)A−1
22

A21A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−µ1

(
A12(1)A−1

22 A22 − A12(1)A−1
22

A21A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

= µ1A12(1)A−1
22

(
A22 −

A21A12(0)

A11

)(
A22 −

A21A12(0)

A11

)−1

−µ1A12(1)A−1
22

(
A22 −

A21A12(1)

A11

)(
A22 −

A21A12(1)

A11

)−1

= 0.

From (A.20), (A.21), and (A.22) we deduce that (A.19) holds for all (x, ε1, ε2) such that

(A.18) is satisfied. �

Step 2: MPLC(Φ·2(s),Φε
·2(s)) ⊆M(A12(s)). Starting from a specification inMPLC(Φ·2(s),Φε

·2(s))
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we derive the A representation and show that A22 and Bj2, j = 1, . . . , k − 1 are constant

across states. Solving (7) for ε1,t and substituting the resulting expression into (9) yields:

y′2 = x′Φ·2(s) + (y∗1A11 + y′2A21 − x′B·1)Φε
12(s) + ε′2Φε

22(s).

Re-arranging terms yields

−y∗1A11Φε
12(s)[Φε

22(s)]−1 + y′2
(
I − A21Φε

12(s)
)
[Φε

22(s)]−1

= x′
(
Φ·2(s)−B·1Φε

12(s)
)
[Φε

22(s)]−1 + ε′2.

From a comparison to (17) we obtain:

A12(s) = −A11Φε
12(s)[Φε

22(s)]−1 (A.22)

A22(s) =
(
I − A21Φε

12(s)
)
[Φε

22(s)]−1

B·2(s) =
(
Φ·2(s)−B·1Φε

12(s)
)
[Φε

22(s)]−1.

We now have to verify that A22(1) = A22(0) and that B·2(1) = Bj2(0), j = 1, . . . , k − 1,

Bk2(1) = 0, and Bk2(0) = µ1(A12(1)− A12(0)).

Consider the continuity restriction. The ELB becomes binding when

−µ1A11 + y′2A21 = x′B·1 + ε1.

Plugging this expression into (9) yields

y′2 = x′Φ·2(s) + (−µ1A11 + y′2A21 − x′B·1)Φε
12(s) + ε′2Φε

22(s).

Solving for y2 yields

y′2 =

(
x′(Φ·2(s)−B·1Φε

12(s))− µ1A11Φε
12(s) + ε′2Φε

22(s)

)
(I − A21Φε

12(s))−1.
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Continuity requires that y2 is the same regardless of ε2 and x for s = 0 and s = 1, that is:

ε2 term : Φε
22(1)(I − A21Φε

12(1))−1 (A.23)

= Φε
22(0)(I − A21Φε

12(0))−1

xj term : (Φj2(1)−Bj1Φε
12(1))(I − A21Φε

12(1))−1

= (Φj2(0)−Bj1Φε
12(0))(I − A21Φε

12(0))−1, j = 1, . . . , k − 1

xk term : (Φk2(1)−Bk1Φε
12(1)− µ1A11Φε

12(1))(I − A21Φε
12(1))−1

= (Φk2(0)−Bk1Φε
12(0)− µ1A11Φε

12(0))(I − A21Φε
12(0))−1.

Re-arranging the first equality in display (A.23) yields

(I − A21Φε
12(0))[Φε

22(0)]−1 = (I − A21Φε
12(1))[Φε

22(1)]−1. (A.24)

and therefore implies that

A22(0) = A22(1). (A.25)

We can rewrite (A.24) as

(I − A21Φε
12(1))−1(I − A21Φε

12(0)) = [Φε
22(1)]−1Φε

22(0). (A.26)

Combining (A.26) with the second set of equations in display (A.23), we obtain

(Φj2(1)−Bj1Φε
12(1))[Φε

22(1)]−1Φε
22(0) = (Φj2(0)−Bj1Φε

12(0)), j = 1, . . . , k − 1.

Thus, we can deduce that

Bj2(1) = Bj2(0), j = 1, . . . , k − 1. (A.27)

as required.

Finally, we will manipulate the third equation in display (A.23) as follows. Following the

same steps as for the xj term, we can write

(Φk2(1)−Bk1Φε
12(1)− µ1A11Φε

12(1))[Φε
22(1)]−1

= (Φk2(0)−Bk1Φε
12(0)− µ1A11Φε

12(0))[Φε
22(0)]−1.
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Using the expressions for A12(s) and Bk2(s) in (A.22) we obtain

Bk2(1) + µ1A12(1) = Bk2(0) + µ1(A12(0).

Moreover, because the intercepts Φk2(1) and Bk1 are equal to zero, we can deduce that

Bk2(1) = 0, Bk2(0) = µ1(A12(1)− A12(0)). �

A.3 An Alternative Formulation of the Necessary and Sufficient

Condition in Proposition 1

Solving (13) for ε1,t yields

ε1,t = −x′t

(
B·1 − Φ·2(1)A21

)
1− Φε

12(1)A21

+ ε′2,t
Φε

22(1)A21

1− Φε
12(1)A21

− µ1
A11

1− Φε
12(1)A21

. (A.28)

For continuity, we require that for all (x, ε1, ε2) such that (A.28) is satisfied the following

equality holds:

x′Φ·2(0) + ε1Φε
12(0) + ε′2Φε

22(0) = x′Φ·2(1) + ε1Φε
12(1) + ε′2Φε

22(1). (A.29)

After replacing ε1 by (A.28), we deduce from the coefficients on ε2 that

Φε
22(0) = Φε

22(1)− Φε
22(1)A21

1− Φε
12(1)A21

Φε∆
12 , (A.30)

where

Φε∆
12 = Φε

12(0)− Φε
12(1).

From the coefficients on x′ we can deduce the following. Starting with j = 1, . . . , k − 1

Φj2(0) = Φj2(1) +

(
Bj1 − Φj2(1)A21

)
1− Φε

12(1)A21

Φε∆
12 . (A.31)

For j = k we obtain

Φk2(0) = Φk2(1) +

(
Bk1 − Φk2(1)A21

)
1− Φε

12(1)A21

Φε∆
12 + µ1

A11

1− Φε
12(1)A21

Φε∆
12 . (A.32)

We can verify that the restrictions in (A.30) to (A.32) are equivalent to (16). Consider
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the condition in (A.31) for j = 1:

Φε∆
12

1− Φε
12(1)A21

=
Φ∆

12

B11 − Φ12(1)A21

. (A.33)

Plugging (A.33) into (A.30) to (A.32) reproduces (16). Moreover, using (A.33), we can

rewrite the condition in Proposition 1(ii) as

sign
(
1− Φε

12(1)A21

)
= sign

(
1− Φε

12(0)A21

)
,

which is equivalent to

κ =
A11 − A11Φε

12(0)A21

A11 − A11Φε
12(1)A21

> 0. (A.34)

Using (A.16) we can write

A11 − A11Φε
12(s)A21 = A11 + A12(s)

(
A22 − A21A

−1
11 A12(s)

)−1
A21. (A.35)

From the formulas for the inverse of a partitioned matrix[
A B

C D

]−1

we obtain the relationship

(D − CA−1B)−1 = D−1 +D−1C(A−BD−1C)−1BD−1.

Thus, we can rewrite (A.35) as follows

A11 − A11Φε
12(s)A21 (A.36)

= A11 + A12(s)
(
A22 − A21A

−1
11 A12(s)

)−1
A21

= A11 + A12(s)A−1
22 A21 + A12(s)A−1

22 A21

(
A11 − A12(s)A−1

22 A21

)−1
A12(s)A−1

22 A21

= A11 + λ(s) +
λ2(s)

A11 − λ(s)

=
1

A11 − λ(s)

(
A2

11 − A11λ(s) + λ(s)A11 − λ2(s) + λ2(s)
)

=
A2

11

A11 − λ(s)
,
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where λ(s) = A12(s)A−1
22 A21 is scalar. In turn,

κ =
A11 − A12(1)A−1

22 A21

A11 − A12(0)A−1
22 A21

, (A.37)

which is identical to the condition provided in Proposition 1 of Mavroeidis (2020) because

in his notation the role of 1 and 2 subscripts are exchanged. �

B The Likelihood Function and Filtering

B.1 Derivations for the Likelihood Function

The derivations for p(y1,t|·) in (38) and p(y2,t|y1,t > −µ1, ·) in (40) are straightforward. We

will focus on the derivation of p(y2,t|y1,t = −µ1, ·) in (39). In the latter case, the specific

value of u1,t(0) is unknown. Write

p(y2,t|y1,t = −µ1, ·) =

∫
p(y2,t|u1,t)p(u1,t|y1,t = −µ1, ·)du1,t. (A.38)

We begin by deriving the density of u1,t conditional on y1,t = −µ1:

p(u1,t|y1,t = −µ1, ·) =
pN
(
u1,t; 0, Σ11(0)

)
I{u1,t(0) ≤ −x′tΦ·1(0)− µ1}

FN

(
−x′tΦ·1(1)+µ1√

Σ11(1)

) . (A.39)

Combining (A.38) and (A.39) yields:

p(y2,t|y1,t = −µ1, ·) =

[
FN

(
−x

′
tΦ·1(1) + µ1√

Σ11(1)

)]−1 ∫
pN
(
u2,t(0); u1,tM12(0), Σ2|1(0)

)
×pN

(
u1,t; 0, Σ11(0)

)
I{u1,t(0) ≤ −x′tΦ·1(0)− µ1}du1,t. (A.40)

In the subsequent steps we will evaluate the integral.

To simplify the notation we drop the st = 0 argument from Σ and Φ matrices. The key
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terms that appear in the integral in (A.40) can be manipulated as follows:

(
u′2,t − u1,tM12

)
Σ−1

2|1
(
u2,t −M21u1,t

)
+ u1,tΣ

−1
11 u1,t

= u′2,tΣ
−1
2|1u2,t − 2u1,tM12Σ−1

2|1u2,t + u1,tM12Σ−1
2|1M21u1,t + u1,tΣ

−1
11 u1,t

= u′2,tΣ
−1
2|1u2,t +

(
M12Σ−1

2|1M21 + Σ−1
11

)(
u1,t −

M12Σ−1
2|1

M12Σ−1
2|1M21 + Σ−1

11

u2,t

)2

−
(
M12Σ−1

2|1u2,t

)2

M12Σ−1
2|1M21 + Σ−1

11

.

Define

M̄u =
M12Σ−1

2|1

M12Σ−1
2|1M21 + Σ−1

11

, V̄u =
(
M12Σ−1

2|1M21 + Σ−1
11

)−1
.

Notice that

(2π)−1/2|V̄u|−1/2 ×
∫

exp

{
− 1

2V̄u
(u1,t − M̄uu2,t)

2

}
I

{
u1,t − M̄uu2,t√

V̄u
≤ −x

′
tΦ·1 + µ1 + M̄uu2,t√

V̄u

}
du1,t

= FN

(
−x

′
tΦ·1 + µ1 + M̄uu2,t√

V̄u

)
.

Therefore, we obtain Equation (40) in the main text:

p(y2,t|y1,t = −µ1, ·)

= (2π)−(n−1)/2|Σ2|1(0)|−1/2|Σ11(0)|−1/2|V̄u(0)|1/2
[
FN

(
−x

′
tΦ·1(1) + µ1√

Σ11(1)

)]−1

×FN

(
−x

′
tΦ·1(0) + µ1 + M̄u(0)u2,t(0)√

V̄u(0)

)

× exp

{
−1

2
u′2,t(0)Σ−1

2|1(0)u2,t(0) +
1

2
V̄ −1
u (0)[M̄u(0)u2,t(0)]2

}
. �

B.2 Particle Filter

We use a bootstrap particle filter (BSPF) to approximate the likelihood function in the

model with stochastic volatility. In the description of the filter we denote the latent state

by st.

Algorithm 1 (Bootstrap Particle Filter)
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1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0|θ) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from the state-transition density p(s̃t|sjt−1, θ).

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , Y1:t−1, θ) (A.41)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (A.42)

(c) Define the normalized weights

W̃ j
t = w̃jtW

j
t−1

/
1

M

M∑
j=1

w̃jtW
j
t−1. (A.43)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let
{sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by sup-

port points and weights {s̃jt , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M . An approxi-
mation of E[h(st)|Y1:t, θ] is given by h̄t,M = 1

M

∑M
j=1 h(sjt)W

j
t .

3. Likelihood Approximation. The approximation of the log-likelihood function is
given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (A.44)

Figure A-1 shows the accuracy of the BSPF. Conditional on the posterior mean θ̄ we run

the BSPF Nrun = 100 times. Because it is a stochastic algorithm, the likelihood approx-

imations differ across runs. The figure depicts kernel density estimates of the distribution

of log likelihood values across runs. The more concentrated the density, the more accurate

the approximation. The accuracy increases with the number of particles M . The SMC2

algorithm implicitly averages out the approximation errors.

B.3 Derivations for the Shadow Rate

Homoskedasticity. The shadow rate can be characterized through the density p(y∗1,t|y1,t =

−µ1, y2,t, xt, θ). Recall that our model conditional on y1,t = −µ1 (and, hence, st = 0) has
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Figure A-1: Accuracy of Particle Filter Approximation of Log Likelihood
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BSPF M=1,000

Notes: Density plots are based on Nrun = 100 runs of the BSPF (M = 100 is solid blue and M = 1, 000 is
dotted red). The parameter value θ is fixed at the posterior mean θ̄.

the reduced-form representation

y∗1,t = x′tΦ·1(0) + u1,t(0), y′2,t = x′tΦ·2(0) + u′2,t(0). (A.45)

Define

Σ1|2(0) = Σ11(0)− Σ12(0)Σ−1
22 (0)Σ21(0), M21(0) = Σ−1

22 (0)Σ21(0). (A.46)

Thus,

u1,t|u2,t ∼ N
(
u′2,tM21(0),Σ1|2(0)

)
.

Now condition on y1,t = −µ1 which we can express as u1,t(0) ≤ −µ1 − x′tΦ·1(0):

p(u1,t|y1,t = −µ1, u2,t(0), ·) (A.47)

=
pN
(
u1,t; u

′
2,tM21(0), Σ1|2(0)

)
I{u1,t(0) ≤ −µ1 − x′tΦ·1(0)}

FN

(
−µ1+x′tΦ·1(0)+u′2,tM21(0)√

Σ12(0)

) ,
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which is the density of a truncated normal distribution. To generate a draw i conditional on

(µ,Φ(0),Σ(0)) from the posterior of the shadow rate, we can proceed as follows:

(i) Compute u′2,t(0) = y′2,t − x′tΦ·2(0).

(ii) Compute Σ1|2(0) and M21(0) using (A.46).

(iii) Draw ui1,t ∼ p(u1,t|y1,t = −µ1, u2,t(0), ·).
(iv) Compute y∗i1,t = x′tΦ·1(0) + ui1,t.

(v) Let ỹ∗i1,t = µ1 + y∗i1,t.

Because xt depends on y1,t−1:t−p instead of y∗1,t−1:t−p inference on the shadow rate is static

and does not require dynamic filtering. The last step shifts the re-centered shadow rate back

to its original level.

Stochastic Volatility. In every period, we compute the shadow rate based on the filtered

volatilities E[Dii,t|Y1:t, θ], adjusting the Σ terms in the homoskedastic expressions to reflect

the time variation of the shock volatility: Σt(s) = Φε(s)DtΦε(s)
′.

C Sequential Monte Carlo Algorithm

Algorithm 2 (Generic SMC Algorithm)

1. Initialization. (n = 0 and φ0 = 0.) Draw the initial particles from the prior: θi1
iid∼

p(θ) and W i
1 = 1, i = 1, . . . , N .

2. Recursion. For n = 1, . . . , Nφ,

(a) Correction. Reweight the particles from stage n− 1 by defining the incremental

weights

w̃in =
pn(Y |θin−1)

pn−1(Y |θin−1)
(A.48)

and the normalized weights

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

, i = 1, . . . , N. (A.49)

(b) Selection (Optional). Resample the swarm of particles, {θin−1, W̃
i
n}Ni=1, and

denote resampled particles by {θ̂in,W i
n}Ni=1, where W i

n = 1 for all i.
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(c) Mutation. Starting from θ̂in, propagate the particles {θ̂in,W i
n} via NMH steps

of a Metropolis-Hastings (MH) algorithm with transition density Kn(θ|θ̃; ζn) and

stationary distribution πn(θ). Note that the weights are unchanged, and denote

the mutated particles by {θin,W i
n}Ni=1.

3. The importance sampling approximation of the posterior mean Eπ[h(θ)] is given by:

h̄Nφ,N =
N∑
i=1

h(θiNφ)W i
Nφ
. (A.50)

Moreover, the marginal likelihood can be approximate by

p̂(Y ) =

Nφ∏
n=1

(
1

N

N∑
i=1

w̃inW
i
n−1

)
. (A.51)

We initialize the SMC algorithm for n = 0 with draws from the prior density, obtained

from a rejection sampler that accounts for the indicator functions fu(θ) and fs(θ) in the

definition of p(θ, λ) in (32).

The correction step is a classic importance sampling step, in which the particle weights

are updated to reflect the stage n distribution πn(θ). The selection step is executed if the

variance of the particle weights, transformed into an effective particle sample size

ÊSSn = N
/( 1

N

N∑
i=1

(W̃ i
n)2

)
, (A.52)

falls below the threshold N/2. This threshold rule balances the trade-off between adding

noise to the Monte Carlo approximation through resampling and inaccuracies due to very

uneven particle weights. The resampling is implemented through systematic resampling; see

the textbooks by Liu (2001) or Cappé, Moulines, and Ryden (2005).

The mutation step changes the particle values. In the absence of the mutation step, the

particle values would be restricted to the set of values drawn in the initial stage from the

prior distribution. This would clearly be inefficient, because the prior distribution is typically

a poor proposal distribution for the posterior in an importance sampling algorithm. As the

algorithm cycles through the Nφ stages, the particle values successively adapt to the shape

of the posterior distribution. This is the key difference between SMC and classic importance

sampling. The transition kernel Kn(θ|θ̃; ζn) is designed to have the following invariance



This Version: June 15, 2021 A-22

property:

πn(θn) =

∫
Kn(θn|θ̂n; ζn)πn(θ̂n)dθ̂n. (A.53)

Thus, if θ̂in is a draw from πn, then so is θin. The mutation step is implemented by using

multiple steps of a Metropolis-Hastings (MH) algorithm. The vector ζn summarizes the

tuning parameters of the MH algorithm.17

D Data Sources

All series are obtained from the economic research database of the Federal Reserve Bank of St.

Louis (FRED). Real GDP is gdpc1, real potential GDP is gdppot, the personal consumption

expenditure deflator is dpcerd3q086sbea, and the federal funds rate is fedfunds. We average

the monthly rates to time-aggregate the interest rates to quarterly frequency.

E Additional Empirical Results

Table A-1 provides summary statistics for the posterior distribution of the model parameters.

In Figures A-2 and A-3 we compare prior (grey) and posterior (green) uncertainty about

the impulse responses generated conditional on the states of the economy in 1999:Q1 and

2009:Q1, respectively. Our prior distribution allows for a wide variety of responses to the

three shocks. While the prior distribution of the impact effect is constrained by the sign

restrictions imposed on α∆
S , βD, and γD, the wide bands for h ≥ 2 indicate that the prior

leaves the sign of the dynamic effect largely unconstrained. The posterior distribution of

the impulse responses is substantially more concentrated, reflecting the sample information

about the effects of the three shocks.

Figure A-4 plots the estimated structural shocks conditional on the posterior mean. The

structural shocks are generated by converting the reduced-form residuals ût using the matrix

Φε(s). During the ELB period there is uncertainty about the realization of the reduced-

form residuals, which is handled in the same way as uncertainty about the shadow rate; see

Section B.3.

17The tuning of the mutation step follows Herbst and Schorfheide (2015).



This Version: June 15, 2021 A-23

Table A-1: Posterior Distribution

Parameter Mean HPD Low HPD High Parameter Mean HPD Low HPD High
µ1 5.32 Φ10,2 0 -0.05 0.03
µ2 -0.94 Φ11,2 -0.02 -0.04 0.01
µ3 2.56 Φ12,2 -0.01 -0.05 0.02
ψπ 0.45 0.24 0.72 Φ1,3 0.08 -0.02 0.15
ψz 1.43 1.16 1.63 Φ2,3 0.02 -0.04 0.14
α∆
S 2.99 2.12 3.63 Φ3,3 0.92 0.84 1.03
βD 0.12 0.02 0.18 Φ4,3 0 -0.11 0.12
−γD 0.78 0.56 0.94 Φ5,3 -0.02 -0.12 0.06
B1,1 1.08 0.91 1.21 Φ6,3 -0.08 -0.18 -0.01
B2,1 -1.15 -1.39 -0.81 Φ7,3 -0.03 -0.08 0.05
B3,1 -0.3 -0.56 0.04 Φ8,3 -0.05 -0.09 0.01
B4,1 -0.18 -0.31 -0.03 Φ9,3 -0.02 -0.07 0.06
B5,1 -0.05 -0.23 0.05 Φ10,3 -0.01 -0.05 0.02
B6,1 -0.01 -0.11 0.14 Φ11,3 0 -0.04 0.03
B7,1 0.02 -0.09 0.1 Φ12,3 -0.01 -0.05 0.02
B8,1 0.02 -0.05 0.08 Φ∆

12,1 -0.05 -0.16 0.12
B9,1 0.11 -0.01 0.18 Φ∆

12,2 -0.36 -0.52 -0.21
B10,1 0.02 -0.04 0.09 D11 0.6 0.43 0.71
B11,1 0.01 -0.03 0.06 D22 0.44 0.35 0.53
B12,1 0.02 -0.03 0.08 D33 1.64 0.68 2.2
Φ1,2 0.1 0.02 0.22 λφ 0.81 0.74 0.92
Φ2,2 0.98 0.87 1.07 λ0 11.87 5.88 18.41
Φ3,2 0.03 -0.12 0.15 λl 3.25 2.46 4.07
Φ4,2 -0.06 -0.18 0.02 ρζ,1 0.89 0.83 0.97
Φ5,2 -0.03 -0.13 0.07 ρζ,2 0.79 0.67 0.89
Φ6,2 -0.02 -0.09 0.09 ρζ,3 0.88 0.84 0.95
Φ7,2 -0.05 -0.1 0.02 ς1 0.29 0.18 0.42
Φ8,2 -0.02 -0.06 0.02 ς2 0.3 0.11 0.45
Φ9,2 -0.04 -0.09 0.03 ς3 0.29 0.18 0.36

Notes: HPD Low and High are the 5th and 95th percentiles of the (marginal) posterior distribution. The
following hyperparameters are fixed: λd = 4, λ∆ = 16, and λI = ∞, meaning we are fixing the level
parameters µ1, µ2, and µ3.
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Figure A-2: Responses to Minus-Two-Standard-Deviation Shocks with Flexible Regimes and
Prior/Posterior Parameter Uncertainty in 1999:Q1
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Notes: Prior median (black) and 90% credible interval (grey); posterior median (green) and 90% credible
interval (light green).
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Figure A-3: Responses to Minus-Two-Standard-Deviation Shocks with Flexible Regimes and
Prior/Posterior Parameter Uncertainty in 2009:Q1
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Notes: Prior median (black) and 90% credible interval (grey); posterior median (green) and 90% credible
interval (light green).
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Figure A-4: Historical Shocks
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Notes: Shocks are computed conditional on posterior mean θ̄. During the ELB period the grey bands indicate
90% equal-tail-probability bands that reflect uncertainty about the realization of the shocks.


