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1. Introduction

This paper addresses the following question: how different are the computational answers

provided by alternative solution methods for dynamic equilibrium economies?

Most dynamic models do not have an analytic, closed-form solution, and we need to use

numerical methods to approximate their behavior. There are a number of procedures to

undertake this task (see Judd, 1998, Marimón and Scott, 1999, or Miranda and Fackler,

2002). However, it is difficult to assess a priori how the quantitative characteristics of the

computed equilibrium paths change when we move from one solution approach to another.

Also the relative accuracies of the approximated equilibria are not well understood.

The properties of a solution method are not only of theoretical interest but crucial to

assess the reliability of the answers provided by quantitative exercises. For example, if we

state as in the classical measurement by Kydland and Prescott (1982), that the productivity

shocks account for seventy percent of the fluctuations of the U.S. economy, we want to know

that this number is not a by-product of numerical error. Similarly, if we use the equilibrium

model for estimation purposes, we need an approximation that does not bias the estimates,

but yet is quick enough to make the exercise feasible.

Over 15 years ago a group of researchers compared solution methods for the growth model

without leisure choice (see Taylor and Uhlig, 1990 and the companion papers). Since then,

a number of nonlinear solution methods — several versions of projection (Judd, 1992) and

perturbation procedures (Judd and Guu, 1997) — have been proposed as alternatives to more

traditional (and relatively simpler) linear approaches and to Value Function Iteration. How-

ever, little is known about the relative performance of the new methods.1 This is unfortunate

since these new methods, built on the long experience of applied mathematics, promise su-

perior performance. This paper tries to fill part of this gap in the literature.

To do so, we use the canonical stochastic neoclassical growth model with leisure choice.

We understand that our findings are conditional on this concrete choice and that this paper

cannot substitute the close examination that each particular problem deserves. The hope

is that, at least partially, the experiences learned from this application could be useful for

other models. In that sense we follow a tradition in numerical analysis that emphasizes the

usefulness of comparing the performance of algorithms in well known test problems.

1For the growth model we are only aware of the comparison between Chebyshev Polynomials and different
versions of the dynamic programming algorithm and policy iteration undertaken by Santos (1999) and Benítez-
Silva et al. (2000). However the two paper (except one case in Santos, 1999) only deal with the model with
full depreciation and never with other nonlinear methods. In a related contribution, Christiano and Fisher
(2000) evaluate how projection methods deal with models with occasionally binding constraints.
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Why do we choose the neoclassical growth model as our test problem? First, because it

is the workhorse of modern macroeconomics. Any lesson learned in this context is bound to

be useful in a large class of applications. Second, because it is simple, a fact that allows us

to solve it with a wide range of methods. For example, a model with binding constraints

would rule out perturbation methods. Third, because we know a lot about the theoretical

properties of the model, results that are useful interpreting our findings. Finally, because

there exist a current project organized by Den Haan, Judd, and Julliard to compare different

solution methods in heterogeneous agents economies. We see our paper as a complement of

this project.

We solve and simulate the model using two main approaches: perturbation and projection

algorithms. Within perturbation, we consider first, second, and fifth order both in levels and

in logs. Note that a first order perturbation is equivalent to linearization when performed in

levels and to loglinearization when performed in logs. Within projection we consider Finite

Elements and Chebyshev Polynomials. For comparison purposes, we also solve the model

using Value Function Iteration. This last choice is a natural benchmark given our knowledge

about the convergence properties of Value Function Iteration (Santos and Vigo, 1998).

We report results for a benchmark calibration of the model and for alternative calibrations

that change the variance of the productivity shock and the risk aversion. In that way we study

the performance of the methods both for a nearly linear case (the benchmark calibration)

and highly nonlinear cases (high variance/high risk aversion). In our simulations we keep a

fixed set of stochastic shocks common for all methods. That allows us to observe the dynamic

responses of the economy to the same driving process and how computed paths and their

moments differ for each approximation. We also assess the accuracy of the solution methods

by reporting Euler Equation errors in the spirit of Judd (1992).

Five main results deserve to be highlighted. First, Perturbation Methods deliver an

interesting compromise between accuracy, speed, and programming burden. For example,

we show how a fifth order perturbation has an advantage in terms of accuracy over all other

solution methods for the benchmark calibration. We quantitatively assess how much and how

quickly perturbations deteriorate when we move away from the steady state (remember that

perturbation is a local method). Also we illustrate how the simulations display a tendency to

explode and the reasons for such behavior.

Second, since higher order perturbations display a much superior performance over linear

methods for a trivial marginal cost, we see a compelling reason to move some computations

currently undertaken with linear methods to at least a second order approximation.
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Third, even if the performance of linear methods is disappointing along a number of

dimensions, linearization in levels is preferred to loglinearization for both the benchmark

calibration and the highly nonlinear cases. This results contradicts a common practice based

on the fact that the exact solution to the model with log utility, inelastic labor, and full

depreciation is loglinear.

Fourth, the Finite Elements method performs very well for all parametrizations. It is

extremely stable and accurate over the range of the state space even for high values of the

risk aversion and the variance of the shock. This property is crucial in estimation procedures

where the accuracy is required to obtain unbiased estimates (see Fernández-Villaverde and

Rubio-Ramírez, 2004). Also, we use very simple linear basis functions. Given the smoothness

of the solution, higher order finite elements would do even better. However it suffers from

being probably the most complicated method to implement in practice (although not the

most intensive in computing time).

Fifth, Chebyshev polynomials share all the good results of the Finite Elements Method and

are easier to implement. Since the neoclassical growth model has smooth policy functions, it

is not surprising that Chebyshev polynomials do well in this application. However in a model

where policy functions has complicated local behavior, Finite Elements might outperform

Chebyshev polynomials.

Therefore, although our results depend on the particular model we have used, they should

encourage a wider use of Perturbation, to suggest the reliance on Finite Elements for problems

that demand high accuracy and stability, and support the progressive phasing out of pure

linearizations.

The rest of the paper is organized as follows. Section 2 presents the neoclassical growth

model. Section 3 describes the different solution methods used to approximate the policy

functions of the model. Section 4 discusses the benchmark calibration and alternative robust-

ness calibrations. Section 5 reports numerical results and section 6 concludes.

2. The Stochastic Neoclassical Growth Model

We use the basic model in macroeconomics, the stochastic neoclassical growth model with

leisure, as our test case for comparing solution methods.2

2An alternative could have been the growth model with log utility and full depreciation, a case where a
closed form solution exists. However, it would be difficult to extrapolate the lessons from this example into
statements for the general case. Santos (2000) shows how changes in the curvature of the utility function and
depreciation quite influence the size of the Euler equation errors.
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Since the model is well known, we only go through the minimum exposition required to

fix notation. There is a representative household with utility function from consumption, ct,

and leisure, 1− lt:

U = E0

∞X
t=1

βt−1

³
cθt (1− lt)1−θ

´1−τ
1− τ

where β ∈ (0, 1) is the discount factor, τ is the elasticity of intertemporal substitution, θ
controls labor supply, and E0 is the conditional expectation operator. The model requires

this utility function to generate a balanced growth path with constant labor supply, as we

observe in the post-war U.S. data. Also, this function nests a log utility as τ → 1.

There is one good in the economy, produced according to yt = eztkαt l
1−α
t , where kt is

the aggregate capital stock, lt is aggregate labor, and zt is a stochastic process representing

random technological progress. The technology follows the process zt = ρzt−1+²t with |ρ| < 1
and ²t ∼ N (0,σ2). Capital evolves according to the law of motion kt+1 = (1−δ)kt+ it, where

δ is the depreciation rate and it investment. The economy must satisfy the aggregate resource

constraint yt = ct + it.

Both welfare theorems hold in this economy. Consequently, we can solve directly for

the social planner’s problem where we maximize the utility of the household subject to the

production function, the evolution of technology, the law of motion for capital, the resource

constraint, and some initial k0 and z0.

The solution to this problem is fully characterized by the equilibrium conditions:³
cθt (1− lt)1−θ

´1−τ
ct

= βEt


³
cθt+1 (1− lt+1)1−θ

´1−τ
ct+1

¡
1 + αezt+1kα−1t+1 l

1−α
t+1 − δ

¢ (1)

(1− θ)

³
cθt (1− lt)1−θ

´1−τ
1− lt = θ

³
cθt (1− lt)1−θ

´1−τ
ct

(1− α) eztkαt l
−α
t (2)

ct + kt+1 = e
ztkαt l

1−α
t + (1− δ) kt (3)

zt = ρzt−1 + εt. (4)

The first equation is the standard Euler equation that relates current and future marginal

utilities from consumption. The second equation is the static first order condition between

labor and consumption. The last two equations are the resource constraint of the economy

and the law of motion of technology.
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Solving for the equilibrium of this economy amounts to finding three policy functions for

consumption c (·, ·) , labor l (·, ·) , and next period’s capital k0 (·, ·) that deliver the optimal
choice of the variables as functions of the two state variables, capital and technology.

All the computational methods described in the next section except for the value function

iteration exploit the equilibrium conditions (1)-(4) to find these functions. This characteristic

makes the extension of the methods to non-pareto optimal economies — where we need to

solve directly for the market allocation — straightforward. Thus, we can export at least part

of the intuition from our results to a large class of economies.

Also, from equations (1)-(4), we can compute the model’s steady state: kss = Ψ
Ω+ϕΨ

,

lss = ϕkss, css = Ωkss, and yss = kαssl
1−α
ss , where ϕ =

³
1
α

³
1
β
− 1 + δ

´´ 1
1−α
, Ω = ϕ

1
α − δ, and

Ψ = θ
1−θ (1− α)ϕ−α. These values will be useful below.

3. Solution Methods

The system of equations listed above does not have a known analytical solution and we need

to employ a numerical method to solve it.

The most direct approach to do so is to attack the social planner’s problem with Value

Function Iteration. This procedure is safe, reliable, and has useful convergence properties

(Santos and Vigo, 1998). However, it is extremely slow (see Rust, 1996 and 1997 for accel-

erating algorithms) and suffers from a strong curse of the dimensionality. Also, it is difficult

to adapt to non-pareto optimal economies (see Kydland, 1989).

Because of these problems, the development of new solution methods for dynamic models

has become an important area of research during the last decades. Most of these procedures

can be grouped in two main approaches: perturbation and projection algorithms.

Perturbation methods build a Taylor series expansion of the agents’ policy functions

around the steady state of the economy and a perturbation parameter. In two seminal

papers, Hall (1971) and Magill (1977) showed how to compute the first term of this series.

Since the policy resulting from a first order approximation is linear and many dynamic models

display behavior that is close to a linear law of motion, the approach became quite popular

under the name of linearization. Judd and Guu (1993) extended the method to compute the

higher-order terms of the expansion.

The second approach is projection methods (Judd, 1992 and Miranda and Helmberger,

1988). These methods take basis functions to build an approximated policy function that

minimizes a residual function (and, hence, are also known as Minimum Weighted Residual
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Methods). There are two versions of the projection methods. In the first one, called Finite

Elements, the basis functions are nonzero only locally. In the second, called spectral, the

basis functions are nonzero globally.

Projection and perturbation methods are attractive because they are much faster than

Value Function Iteration while maintaining good convergence properties. This point is of

practical relevance. For instance, in estimation problems, speed is of the essence since we

may need to repeatedly solve the policy function of the model for many different parameter

values. Convergence properties assure us that, up to some accuracy level, we are indeed

getting the correct equilibrium path for the economy.

In this paper we compare eight different methods. Using perturbation, we compute a first,

second, and fifth order expansion of the policy function in levels. We also compute a first and

a second order expansion of the policy function in logs. Using projection, we compute a Finite

Elements method with linear functions and a spectral procedure with Chebyshev Polynomials.

Finally, and for comparison purposes, we also perform a Value Function Iteration.

We do not try to cover every single known method but rather to be selective and choose

those methods that we find more promising based either on the experience by the literature

or on intuition from numerical analysis. Below we discuss how some apparently excluded

methods are particular cases of some of our approaches.

The rest of this section describes each of these solution methods. A companion web

page at http://www.econ.upenn.edu/~jesusfv/companion.htm posts on line all the codes

required to reproduce the computations, as well as some additional material.

3.1. Perturbation

Perturbation methods (Judd and Guu, 1993 and Gaspar and Judd, 1997) build a Taylor series

expansion of the policy functions of the agents around the steady state of the economy and a

perturbation parameter. We use the standard deviation of the innovation to the productivity

level, σ, as a perturbation parameter. As shown by Judd and Guu (2001), the standard

deviation needs to be the perturbation parameter in discrete time models since odd moments

may be important.

Thus, the policy functions for consumption, labor, and capital accumulation are:

cp(k, z,σ) =
X
i,j,m

acijm (k − kss)i (z − zss)j σm

lp(k, z,σ) =
X
i,j,m

alijm (k − kss)i (z − zss)j σm
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k0p(k, z,σ) =
X
i,j,m

akijm (k − kss)i (z − zss)j σm

where acijm =
∂i+j+mc(k,z,σ)
∂ki∂zj∂σm

¯̄̄
kss,zss,0

, alijm =
∂i+j+ml(k,z,σ)
∂ki∂zj∂σm

¯̄̄
kss,zss,0

and akijm =
∂i+j+mk0(k,z,σ)

∂ki∂zj∂σm

¯̄̄
kss,zss,0

are equal to the derivative of the policy functions evaluated at the steady state and σ = 0.

The perturbation scheme works as follows. We take the model equilibrium conditions

(1)-(4) and substitute the unknown policy functions cp(k, z,σ), lp(k, z,σ), and k0p(k, z,σ)

into them. Then, we take successive derivatives with respect to the k, z, and σ. Since the

equilibrium conditions are equal to zero for any value of k, z, and σ, a system created by

their derivatives of any order will also be equal to zero. Evaluating the derivatives at the

steady state and σ = 0 delivers a system of equations on the unknown coefficients acijm, a
l
ijm,

and akijm.

The solution of these systems is simplified because of the recursive structure of the prob-

lem. The constant terms ac000, a
l
000, and a

k
000 are equal to the steady state for consumption,

labor, and capital. Substituting these terms in the system of first derivatives of the equilib-

rium conditions generates a quadratic matrix-equation on the first order terms of the policy

function (by nth order terms of the policy function we mean aqijm such that i + j +m = n

for q = c, l, k). Out of the two solutions we pick the one that gives us the stable path of the

model.

The next step is to plug in the system created by the second order expansion of the

equilibrium conditions the known coefficients from the previous two steps. This generates a

linear system in the second order terms of the policy function that is trivial to solve.

Iterating in the procedure (taking a one higher order derivative, substituting previously

found coefficients, and solving for the new unknown coefficients), we would see that all the

higher than second order coefficients are the solution to linear systems. The intuition of why

only the system of first derivatives is quadratic is as follows. The neoclassical growth model

has two saddle paths. Once we have picked the right path with the stable solution in the first

order approximation, all the other terms are just refinements of this path.

Perturbations only deliver an asymptotically correct expression around the deterministic

steady state for the policy function. However, the positive experience of asymptotic ap-

proximations in other fields of applied mathematics suggests there is the potential for good

nonlocal behavior (Bender and Orszag, 1999).

The burden of the method is taking all the required derivatives, since paper and pen-

cil become virtually infeasible after the second derivatives. Gaspar and Judd (1997) show

that higher order numerical derivatives accumulate enough errors to prevent their use. An
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alternative is to work symbolic manipulation software as Mathematica,3 as we do, or to use

specially developed code as the package PertSolv written by Hehui Jin (Jin and Judd, 2004).

We have to make two decision when implementing perturbation. First, we need to decide

the order of the perturbation, and, second, we need to choose whether to undertake our

perturbation in levels and logs (i.e. substituting each variable xt by xssebxt, where bxt = log xt
xss
,

and obtain an expansion in terms of bxt instead of xt).
About the first of the issues, we choose first, second, and fifth order perturbations. First

order perturbations are exactly equivalent to linearization, probably the most extended pro-

cedure to solve dynamic models.4 Linearization delivers a linear law of motion for the choice

variables that displays certainty equivalence, i.e., it does not depend on σ. This point will be

important when we discuss our results.

Second order approximations have received attention because of the easiness of their

computation (Sims, 2000). We find of interest to assess how much we gain by this simple

correction of the linear policy functions.

Finally, we pick a high order approximation. After the fifth order the coefficients are

nearly equal to the machine zero (in a 32-bits architecture of the standard PCs) and further

terms do not add much to the behavior of the approximation.

Regarding the level versus logs choice, some practitioners have favored logs because the

exact solution of the neoclassical growth model in the case of log utility and full depreciation

is loglinear. Evidence in Christiano (1990) and Den Haan and Marcet (1994) suggests that

this may be the right practice but the question is not completely settled. To cast light on

this question, we computed our perturbations both in levels and in logs.

Because of space considerations, we only present results in levels except for two cases:

the first order approximation in logs (also known as loglinerization) because it is commonly

employed, and the second order approximation for a high variance/high risk aversion case,

because in this parametrization the results depend on the use of levels or logs. In the omitted

cases, the results in logs were nearly indistinguishable from the results in levels.

3For second order perturbations we can also use the Matlab based programs by Schmitt-Grohé and Uribe
(2002) and Sims (2000). For higher order perturbations we used Mathematica because the symbolic toolbox
of Matlab cannot handle more than the second derivatives of abstract functions.

4Note that, subject to applicability, all different linear methods -Linear Quadratic approximation (Kydland
and Prescott, 1982), the Eigenvalue Decomposition (Blanchard and Kahn, 1980 and King, Plosser and Rebelo,
2002), Generalized Schur Decomposition (Klein, 2000), or the QZ decomposition (Sims, 2002) among many
others, deliver the same result than this first order perturbation. The linear approximation of a differentiable
function is unique and invariant to differentiable parameters transformations.
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3.2. Projection Methods

Now we present two different versions of the projection algorithm: the Finite Elements

method and the Spectral method.

3.2.1. Finite Elements Method

The Finite Elements Method (Hughes, 2000) is the most widely used general-purpose tech-

nique for numerical analysis in engineering and applied mathematics. The method searches for

a policy function for labor supply of the form lfe
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) where Ψij (k, z)

is a set of basis functions and θ is a vector of parameters to be determined. Given lfe
¡
k, z; θ

¢
,

the static first order condition, (2), and the resource constraint, (3), imply two policy function

c(k, z; lfe
¡
k, z; θ

¢
) and k0

¡
k, z; lfe

¡
k, z; θ

¢¢
for consumption and next period capital.

The essence is to select basis functions that are zero for most of the state space except

a small part of it, known as element, an interval in which they take a simple form, typically

linear.5 Beyond being conceptually intuitive, this choice of basis functions features several

interesting properties. First, it provides a lot of flexibility in the grid generation: we can create

smaller elements (and consequently very accurate approximations of the policy function)

where the economy spends more time and larger ones in those areas less travelled. Second,

since the basis functions are nonzero only locally, large numbers of elements can be handled.

Third, the Finite Elements method is well suited for implementation in parallel machines.

The implementation of the method begins by writing the Euler equation as:

Uc,t =
β√
2πσ

Z ∞

−∞

£
Uc,t+1(1 + αezt+1kα−1t+1 lfe(kt+1, zt+1)

1−α − δ)
¤
exp(−²

2
t+1

2σ2
)d²t+1 (5)

where

Uc,t =

³
c(kt, zt; lfe

¡
kt, zt; θ

¢
)θ
¡
1− lfe

¡
kt, zt; θ

¢¢1−θ´1−τ
c(kt, zt; lfe

¡
kt, zt; θ

¢
)

,

kt+1 = k
0 ¡kt, zt; lfe ¡kt, zt; θ¢¢ , and zt+1 = ρzt + ²t+1.

In order to compute the integral of the right hand side of equation (5) we use the Gauss-

Hermite method (Press et al., 1992). Hence, we need to bound the domain of the state

variables. To bound the productivity level of the economy define λt = tanh(zt). Since

λt ∈ [−1, 1] , we have λt = tanh(ρ tanh−1(λt−1) +
√
2σvt), where vt = ²t√

2σ
. Now, since

5We can have more elaborated basis functions as Chebyshev polynomials. These type of schemes, known
as the p-method are much less used than the so-called h-method whereby the approximation error is reduced
by specifying smaller elements.
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exp(tanh−1(zt−1)) =
√
1+λt+1√
1−λt+1

= bλt+1, we rewrite (5) as:
Uc,t =

β√
π

Z 1

−1

h
Uc,t+1

³
1 + αbλt+1kα−1t+1 lfe(kt+1, tanh

−1(λt+1))1−α + δ
´i
exp(−v2t+1)dvt+1 (6)

where

Uc,t =

³
c(kt, tanh

−1(λt); lfe
¡
kt, tanh

−1(λt); θ
¢
)θ
¡
1− lfe

¡
kt, tanh

−1(λt); θ
¢¢1−θ´1−τ

c(kt, tanh
−1(λt); lfe

¡
kt, tanh

−1(λt); θ
¢
)

,

kt+1 = k
0 ¡kt, tanh−1(λt); lfe ¡kt, tanh−1(λt); θ¢¢ , and λt+1 = tanh(ρ tanh

−1(λt) +
√
2σvt+1).

To bound the capital we fix an ex-ante upper bound k, picked sufficiently high that it

will only bind with an extremely low probability. As a consequence, the Euler equation (6)

implies the residual equation:

R(kt,λt; θ) =
β√
π

Z 1

−1

·
Uc,t+1
Uc,t

³
1 + αbλt+1kα−1t+1 lfe(kt+1, tanh

−1(λt+1))1−α + δ
´¸
exp(−v2t+1)dvt+1−1

Now, we define Ω =
£
0, k
¤ × [−1, 1] as the domain of lfe(k, tanh−1(λ); θ) and divide Ω

into nonoverlapping rectangles [ki, ki+1]× [λj,λj+1], where ki is the ith grid point for capital
and λj is jth grid point for the technology shock. Clearly Ω = ∪i,j [ki, ki+1] × [λj,λj+1].
Each of these rectangles is called an element. These elements may be of unequal size. In our

computations we have small elements in the areas of Ω where the economy will spend most

of the time while just a few, big elements will cover wide areas of the state space infrequently

visited.6

Next we set Ψij (k,λ) = bΨi (k) eΨj (λ) ∀i, j where:
bΨi (k) =


k−ki−1
ki−ki−1 if k ∈ [ki−1, ki]
ki+1−k
ki+1−ki if k ∈ [ki, ki+1]

0 elsewhere

eΨj (λ) =


λ−λj−1
λj−λ−1j if λ ∈ [λj−1,λj]
λj+1−λ
λj+1−λj if λ ∈ [λj,λj+1]

0 elsewhere

are the basis functions. Note that Ψij (k,λ) = 0 if (k,λ) /∈ [ki−1, ki+1]× [λj−1,λj+1] ∀i, j, i.e.,
the function is 0 everywhere except inside four elements. Also we have lfe(ki, tanh

−1(λj); θ) =

θij ∀i, j, i.e., the values of θ specify the values of lfe at the corners of each subinterval
6There is a whole area of research concentrated on the optimal generation of an element grid. See Thomson,

Warsi, and Mastin (1985).
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[ki, ki+1]× [λj,λj+1].
A natural criterion for finding the θ unknowns is to minimize this residual function over

the state space given some weight function. A Galerkin scheme implies that we weight the

residual function by the basis functions and solve the system of equations:Z
[0,k]×[−1,1]

Ψi,j (k,λ)R(k,λ; θ)dkdλ = 0 ∀i, j (7)

on the θ unknowns.

Since the basis functions are zero outside their element, we can rewrite (7) as:Z
[ki−1,ki]×[λj−1,λj ]∪[ki,ki+1]×[λj ,λj+1]

Ψi,j (k,λ)R(k,λ; θ)dkdλ = 0 ∀i, j (8)

In order to solve this system we use Gauss-Legendre for the integrals in (8) (Press et al.,

1992). The solution of the system delivers our desired policy function lfe
¡
k, tanh−1(λ); θ

¢
,

from which we can find all the other variables in the economy.7

We use 71 unequal elements in the capital dimension and 31 on the λ axis. To solve the

associated system of 2201 nonlinear equations we use a Quasi-Newton algorithm.

3.2.2. Spectral Method (Chebyshev Polynomials)

Like Finite Elements, spectral methods (Judd, 1992) search for a policy function of the form

lsm
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) where Ψij (k, z) is a set of basis functions and θ is a vector of

parameters to be determined. The difference with respect to the Finite Elements is that the

basis functions are (almost everywhere) nonzero for most of the state space.

Spectral methods have two advantages over Finite Elements. First, they are easier to

implement. Second, since we can handle a large number of basis functions, the accuracy of

the solution is potentially high. The main drawback of the procedure is that, since the policy

functions are nonzero for most of the state space, if the policy function displays a rapidly

changing local behavior, or kinks, the scheme may deliver a poor approximation.

A common choice for the basis functions are the Chebyshev polynomials. Since the domain

of the Chebyshev polynomials is [−1, 1], we need to bound both capital and technology, and
7Policy function iteration (Miranda and Helmburger, 1988) is a particular case of the Finite Elements

when we pick a collocation scheme in the points of a grid, linear basis functions, and an iterative scheme to
solve for the unknown coefficients. Experience from numerical analysis shows that nonlinear solvers (as our
Newton scheme) or multigrid schemes outperformn iterative algorithms (see Briggs, Henson, and McCormick,
2000). Also Galerkin weigthings are superior to collocation for Finite Elements (Boyd, 2001).
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define the linear map from those bounds into [−1, 1]. Capital must belong to the set [0, k],
where k is picked sufficiently high that it will only bind with an extremely low probability. The

bounds for the technological shock, [z, z], come from Tauchen (1986)’s method to approximate

to an AR(1) process. Then, we set Ψij (k, z) = bΨi (Φk (k)) eΨj (Φz (z)) where bΨi (·) and eΨj (·)
are Chebyshev polynomials8 (see Boyd, 2001 and Fornberg, 1998) and Φk (k) and Φz (z) define

the linear mappings from [0, k] and [z, z] respectively to [−1, 1].
As in Finite Elements method we use the two Euler Equations with the budget constraint

substituted in to get a residual function:

R(kt, zt; θ) =
β√
2πσ

Z ∞

−∞

·
Uc,t+1
Uc,t

(1 + αezt+1kα−1t+1 lsm(kt+1, zt+1)
1−α − δ)

¸
exp(−²

2
t+1

2σ2
)d²t+1

(9)

where

Uc,t =

³
c(kt, zt; lsm

¡
kt, zt; θ

¢
)θ
¡
1− lsm

¡
kt, zt; θ

¢¢1−θ´1−τ
c(kt, zt; lsm

¡
kt, zt; θ

¢
)

,

kt+1 = k
0 ¡kt, zt; lsm ¡kt, zt; θ¢¢ , and zt+1 = ρzt + ²t+1.

Instead of a Galerkin weighting, computational experience (Fornberg, 1998) suggests that,

for spectral methods, a collocation (also known as pseudospectral) criterion delivers the best

trade-off between accuracy and ability to handle a large number of basis functions. The points

{ki}n1i=1 and {zj}n2j=1 are called the collocation points. We choose the roots of the nth1 order

Chebyshev polynomial as the collocation points for capital.9 This choice is called orthogonal

collocation since the basis functions constitute an orthogonal set. These points are attractive

because by the Chebyshev Interpolation Theorem, if an approximating function is exact at

the roots of the nth1 order Chebyshev polynomial, then, as n1 →∞, the approximation error
becomes arbitrarily small. For the technology shock we use Tauchen (1986)’s finite approx-

imation to an AR(1) process and obtain n2 points. We also use the transition probabilities

implied by this approximation to compute the integral in the right hand of equation (9).

Therefore, we need to solve the following system of n1 × n2 equations

R(ki, zj; θ) = 0 for ∀i, j collocation points (10)

with n1 × n2 unknowns θij. This system is easier to solve than (7) since we will have in

8These polynomials can be recursively defined by T0 (x) = 1, T1 (x) = 1, and for general n, Tn+1 (x) =
2Tn (x)− Tn−1 (x).

9The roots are given by ki =
xi+1
2 , where xi = cos

n
π[2(n1−i+1)−1]

2n1

o
, i = 1, .., n1.
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general less equations and we avoid the integral induced by the Galerkin weigthing.10

To solve the system we use a Quasi-Newton method and an iteration based on the incre-

ment of the number of basis functions and a nonlinear transform of the objective function

(Judd, 1992). First, we solve a system with only three collocation points for capital (and n2
points for the technology shock). Then, we use that solution as a guess for a system with

one more collocation point for capital (with the new coefficients being guessed equal to zero).

We get a new solution, and continue in the procedure until we use up to 11 polynomials in

the capital dimension and 9 in the productivity axis.

3.3. Value Function Iteration

Finally we solve the model using value function iteration. Since the dynamic algorithm is

well known we only present a sparse discussion.

Consider the following the Bellman operator:

TV (k, z) = max
c>0,0<l<1,k0>0

³
cθ (1− l)1−θ

´1−τ
1− τ

+ βEV (k0, z0|z)
c+ k0 = exp (z) kαl1−α + (1− δ) k

z0 = ρz + ε

To solve the Bellman operator we define a grid on capital, Gk ≡ {k1, k2, . . . , kM}, and
use the Tauchen’s (1986) method to the stochastic process z, Gz ≡ {z1, z2, . . . , zN}, and
ΠN being the resulting transition matrix with generic element πNi,j ≡ Pr (z0 = zj|z0 = zi).
However, we only use those points as a grid for productivity and to compute the expectation

of the value function in the next period. When we simulate the model we interpolate along

the productivity dimension.

The algorithm to iterate on the Value function for a given grid is given by:

I. Set n = 0 and V0 (k, z) =
(cθss(1−lss)1−θ)

1−τ

1−τ for all k ∈ Gk and all z ∈ Gz.

II. Set i = 1.

a. Set j = 1 and r = 1.

10Parametrized expectations (see Marcet and Lorenzoni, 1999 for a description) is a spectral method that
uses monomials (or exponents of) in the current states of the economy and montecarlo integration. Since
monomials are highly collinear and determinist integration schemes are preferred for low dimensional problems
over Montecarlos (Geweke, 1996), we stick with Chebyshev polynomials as our favorite basis.
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b. 1. Set s = r and U si,j = − inf.
2. Use Newton method to find ls that solves

(1− α) exp (zj) k
α
i l
−α (1− l) + ks = exp (zj) kαi l1−α + (1− δ) ki

3. Compute

Usi,j =

³
((1− α) exp (zj) k

α
i l
−α
s (1− ls))θ (1− ls)1−θ

´1−τ
1− τ

+ β
NX
r=1

πNj,rVn (ks, zr)

4. If U s−1i,j ≤ U si,j, then sÃ s+ 1 and go to 2.

5. Define

U (k; ki, zj) =

³
((1− α) exp (zj) k

α
i l
−α (1− l))θ (1− l)1−θ

´1−τ
1− τ

+β
NX
r=1

πNj,r bVn (k, zr)
for k ∈ [ks−2, ks], where l solves

(1− α) exp (zj) k
α
i l
−α (1− l) + k = exp (zj) kαi l1−α + (1− δ) ki

and bVn (k, zr) is computed using interpolation.11
6. Let k∗i,j = argmaxU (k; ki, zj).

7. Set r such that k∗i,j ∈ [kr, kr+1] and Vn+1 (ki, zj) = U
¡
k∗i,j; ki, zj

¢
.

c. If j < N , then j Ã j + 1 and go to b.

III. If i < N , iÃ i+ 1 and go to a.

IV. If supi,j |Vn+1 (ki, zj)− Vn (ki, zj)| /Vn (ki, zj) ≥ 1.0e−8, then nÃ n+ 1 and go to II.12

To accelerate convergence, we follow Chow and Tsitsiklis (1991). We start with a small

grid, that we refine to a grid with more points (with linear interpolation to fill the unknown

values), and recompute the value function. Iterating with this procedure we move from an

initial 8000 points grid into a final one with one million points. (25000 points for capital and

40 for the productivity level).

11We interpolate using linear, quadratic, and Schumaker’s splines (Judd and Solnick, 1994). Results were
very similar with all three methods because the final grid was so fine that how interpolation was done did
not really matter. The results in the paper are those with linear interpolation.
12We also monitored convergence in the policy function that was much quicker.
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4. Calibration: Benchmark Case and Robustness

To make our comparison results as useful as possible, we pick a benchmark calibration and

we explore how those results change as we move to different “unrealistic” calibrations.

We select the benchmark calibration values for the model as follows. The discount factor

β = 0.9896 matches an annual interest rate of 4% (see McGrattan and Prescott, 2000 for a

justification of this number based on their measure of the return on capital and on the risk-free

rate of inflation-protected U.S. Treasury bonds). The risk aversion τ = 2 is a common choice

in the literature. θ = 0.357 matches labor supply to 31% of available time in the steady state.

We set α = 0.4 to match labor share of national income (after the adjustments to National

Income and Product Accounts suggested by Cooley and Prescott, 1995). The depreciation

rate δ = 0.0196 fixes the investment/output ratio. Values of ρ = 0.95 and σ = 0.007 match

the stochastic properties of the Solow residual of the U.S. economy. The chosen values are

summarized in table 4.1.

Table 4.1: Calibrated Parameters

Parameter β τ θ α δ ρ σ

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.007

To check robustness, we repeat our analysis for five other calibrations. Thus, we study the

relative performance of the methods both for a nearly linear case (the benchmark calibration)

and for highly nonlinear cases (high variance/high risk aversion). We increase the risk aversion

to 10 and 50 and the standard deviation of the productivity shock to 0.035. Although belowwe

concentrate on the results for the benchmark and the extreme case, the intermediate cases are

important to check that our comparison across calibrations does not hide non-monotonicities.

Table 4.2. summarizes our different cases.

Table 4.2: Sensitivity Analysis

case σ = 0.007 σ = 0.035

τ = 2 Benchmark Intermediate Case 3

τ = 10 Intermediate Case 1 Intermediate Case 4

τ = 50 Intermediate Case 2 Extreme

Also, we briefly discuss some results for the deterministic case σ = 0 since they well help

us understand some characteristics of the proposed methods, for the case σ = 1 (log utility

function), and for lower β’s.
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5. Numerical Results

In this section we report our numerical findings. We concentrate on the benchmark and

extreme calibrations, reporting the intermediate cases when they clarify the argument. First,

we present and discuss the computed policy functions. Second, we show some simulations.

Third, we perform the χ2 accuracy test proposed by Den Haan and Marcet (1990), we report

the Euler Equation Errors as in Judd (1992) and Judd and Guu (1997). Fourth, we study the

robustness of the results. Finally, we discuss details about implementation and computing

time.

5.1. Policy Functions

One of our first results are the policy functions. We plot the decision rules for labor supply

when z = 0 over a capital interval centered around the steady state level of capital for the

benchmark calibration in Figure 5.1.1 and for investment in Figure 5.1.2.13 Since many

of the nonlinear methods provide indistinguishable answers, we only observe four lines in

both figures. Labor supply is very similar in all methods, especially in the neighborhood of

23.14, the steady state level of capital. Only far away from that neighborhood we appreciate

differences. A similar description applies to the policy rule for investment except for the

loglinear approximation where the rule is pushed away from the other ones for low and high

capital. The difference is big enough that even the monotonicity of the policy function is lost.

We must be cautious, however, mapping differences in choices into differences in utility. The

Euler Error function below provides a better view of the welfare consequences of different

approximations.

Bigger differences appear as we increase risk aversion and the variance of the shock. The

policy functions for the extreme calibration are presented in Figures 5.1.3 and 5.1.4. In these

figures we change the interval reported because, due to the risk aversion/high variance of the

calibration, the equilibrium paths fluctuate around higher levels of capital (between 30 and

45) when the solution method accounts for risk aversion (i.e., all the nonlinear ones).

We highlight several results. First, the linear and loglinear policy functions deviate from

all the other ones: they imply much less labor (around 10%) and investment (up to 30%) than

nonlinear methods. This difference in level is due to the lack of correction for increased vari-

ance of the technology shock by these two approximations since they are certainty-equivalent.

Second, just correcting for quadratic terms in the second order perturbation allows to get the

13Similar figures could be plotted for other values of z. We omit them because of space considerations.
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right level of the policy functions. This is a key argument in favor of phasing out linearizations

and substitute them by at least second order perturbations. Third, the policy function for

labor and investment approximated by the fifth order perturbation changes from concavity

into convexity for values of capital bigger than 45 (contrary to the theoretical results). This

change of slope will cause problems below in our simulations. Fourth, the policy functions

have a positive slope because of precautionary behavior. Numerically we found that the

change in slope occurs for τ around 40.

5.2. Simulations

Practitioners often rely in statistics from simulated paths of the economy. We computed 1000

simulations of 500 observations each for all different methods. To make comparisons mean-

ingful we kept the productivity shock constant across methods for each particular simulation.

For the benchmark calibration, the simulation from all the models generate nearly iden-

tical equilibrium paths, densities of the variables, and business cycle statistics. These results

are a simple consequence of the similarity of the policy functions. Because of space consider-

ations, we do not include these results, but they are available at the companion web page at

http://www.econ.upenn.edu/~jesusfv/companion.htm.

More interesting is the case of the extreme calibration. We plot in Figures 5.2.1-3 the

histograms of output, capital, and labor for each solution methods. In these histograms

we see three groups: first the two linear methods, second the perturbations and finally the

three global methods (value function, Finite Elements and Chebyshev). The last two groups

have the histograms shifted to the right: much more capital is accumulated and more labor

supplied by all the methods that allow for corrections by variance. For example the empirical

distributions of nonlinear methods accumulate a large percentage of their mass between 40

and 50 while the linear methods rarely visit that region. Even different non-linear methods

provide quite a diverse description of the behavior of economy. In particular the three global

methods are in a group among themselves (nearly on top of each other) separated from

perturbations that lack enough variance. Higher risk aversion/high variance also have an

impact for business cycle statistics. For example investment is three times more volatile in

the linear simulation than with Finite Elements despite the filtering of the data.

The simulations show a drawback of using perturbations to characterize equilibrium

economies when disturbances are normal. For example in 39 simulations out of the 1000

(not shown on the histograms) fifth order perturbation generated a capital that exploded.

The reason for that abnormal behavior is the change in the slope of the policy functions re-
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ported above. When the economy travels into that part of the policy functions the simulation

falls in an unstable path and the results need to be disregarded. Jin and Judd (2002) suggest

the use of disturbances with bounded support to solve this problem.

5.3. A χ2 Accuracy Test

From our previous discussion it is clear that the consequences for simulated equilibrium paths

of using different methods are important. A crucial step in our comparison is then the analysis

of accuracy of the computed approximations to figure it out which one we should prefer.

We begin that investigation implementing the χ2−test proposed by Den Haan and Marcet
(1990). The authors noted that if the equilibrium of the economy is characterized by a system

of equations f (yt) = Et (φ (yt+1, yt+2, ..)) where the vector yt contains all the n variables that

describe the economy at time t, f : <n → <m and φ : <n × <∞ → <m are known functions
and Et (·) represent the conditional expectation operator, then:

Et (ut+1 ⊗ h (xt)) = 0 (11)

for any vector xt measurable with respect to t with ut+1 = φ (yt+1, yt+2, ..) − f (yt) and
h : <k → <q being an arbitrary function.
Given one of our simulated series of length T from the method i in previous section,

{yit}Tt=1, we can find
©
uit+1, x

i
t

ªT
t=1

and compute the sample analog of (11):

BiT =
1

T

TX
t=1

uit+1 ⊗ h
¡
xit
¢
. (12)

Clearly (12) would converge to zero as T increases almost surely if the solution method

were exact. However, given the fact that we only have numerical methods to solve the

problem, this may not be the case. However the statistic T (BiT )
0
(AiT )

−1
BiT where A

i
T is

a consistent estimate of the matrix
P∞

t=−∞Et
£
(ut+1 ⊗ h (xt)) (ut+1 ⊗ h (xt))0

¤
given solution

method i, converges in distribution to a χ2 with qm degrees of freedom under the null that

(11) holds. Values of the test above the critical value can be interpreted as evidence against

the accuracy of the solution.

Since any solution method is an approximation, as T grows we will eventually reject the

null. To control for this problem, we can repeat the test for many simulations and report the

percentage of statistics in the upper and lower critical 5% of the distribution. If the solution

provides a good approximation, both percentages should be close to 5%.
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We report results for the benchmark calibration in Table 5.3.1 (the Empirical CDF can

be found in the companion web page).14 All the methods perform similarly and reasonably

close to the nominal coverages, with a small bias towards the right of the distribution. Also,

and contrary to some previous findings for simpler models (Den Haan and Marcet, 1994 and

Christiano, 1990) it is not clear that we should prefer loglinearization to linearization.

Table 5.3.1: χ2 Accuracy Test, τ = 2/σ = 0.007

Less than 5% More than 95%

Linear 3.10 5.40

Log-Linear 3.90 6.40

Finite Elements 3.00 5.30

Chebyshev 3.00 5.40

Perturbation 2 3.00 5.30

Perturbation 5 3.00 5.40

Value Function 2.80 5.70

We present the results for the extreme case in table 5.3.2.15 Now the performance of

the linear methods deteriorates enormously, with unacceptable coverages (although again

linearization in levels is no worse than loglinearization). On the other hand nonlinear methods

deliver a good performance, with very reasonable coverages on the upper tail (except second

order perturbations). The lower tail behavior is poor for all methods.

Table 5.3.2: χ2 Accuracy Test, τ = 50/σ = 0.035

Less than 5% More than 95%

Linear 0.43 23.42

Log-Linear 0.40 28.10

Finite Elements 1.10 5.70

Chebyshev 1.00 5.20

Perturbation 2 0.90 12.71

Perturbation 2-Log 0.80 22.22

Perturbation 5 1.56 4.79

Value Function 0.80 4.50

14We use a constant, kt, kt−1, kt−2 and zt as our instruments, 3 lags and a Newey-West Estimator of the
matrix of variances-covariances (Newey and West, 1987).
15The problematic simulations as described above are not included in these computations.
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5.4. Euler Equation Errors

The previous test is a simple procedure to evaluate the accuracy of a solution. That approach

may suffer, however, from three problems. First, since all methods are approximations, the

test will display poor power. Second, orthogonal residuals can be compatible with large

deviations from the optimal policy. Third, the model will spend most of the time in those

regions where the density of the stationary distribution is higher. However, sometimes it is

important to ensure accuracy far away from the steady state, like in estimation problems.

Judd (1992) proposes to determine the quality of the solution method defining normalized

Euler equation errors. First, note that in our model the intertemporal condition:

u0c (c (kt , zt) , l (kt , zt)) = βEt {u0c (c (k (kt , zt) , zt+1) , l (k (kt , zt) , zt+1))R (kt , zt , zt+1)}
(13)

where R (kt , zt, zt+1) =
¡
1 + αezt+1k (kt , zt)

α−1 l (k (kt , zt) , zt+1)
1−α − δ

¢
is the gross return

rate of capital, should hold exactly for given kt and zt. Since the solution methods used are

only approximations, (13) will not hold exactly when evaluated using the computed decision

rules. Instead, for solution method i with associated policy rules ci (· , ·) , li (· , ·) , and ki (· , ·) ,
and the implied gross return of capital Ri (kt , zt, zt+1), we can define the Euler equation error

function EEi (· , ·) as:

EEi (kt , zt) ≡ 1−

Ã
βEt{u0c(ci(ki(kt ,zt) ,zt+1),li(ki(kt ,zt) ,zt+1))Ri(kt ,zt,zt+1)}

θ(1−li(ki(kt ,zt) ,zt+1))(1−θ)(1−τ)

! 1
θ(1−τ)−1

ci (kt , zt)
.

This function determines the (unit free) error in the Euler equation as a fraction of the

consumption given the current states kt and zt and solution method i. Judd and Guu (1997)

interpret this error as the relative optimization error incurred by the use of the approximated

policy rule. For instance, if EEi (kt , zt) = 0.01, then the agent is making a $1.00 mistake

for each $100 spent. In comparison, EEi (kt , zt) = 1e−8 implies that the agent is making a 1

cent mistake for each million of dollars spent.

The Euler equation error is also important because we know that, under certain conditions,

the approximation error of the policy function is of the same order of magnitude as the size

of the Euler equation error. Correspondingly, the change in welfare is of the square order of

the Euler equation error (Santos, 2000).

Plots of the Euler equation error functions can be found in the companion web page. To

get a better view of the relative performance of each approximation and since plotting all the
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error functions in a same plot is cumbersome, Figure 5.4.1 displays a transversal cut of the

errors when z = 0. We report the absolute errors in base 10 logarithms to ease interpretation.

A value of -3 means $1 mistake for each $1000, a value of -4 a $1 mistake for each $10000

and so on.

We can see how the loglinear approximation is worse than the linearization except at two

valleys. These two valleys appear because the error in levels goes from positive into negative

values. Finite Elements and Chebyshev polynomials perform three orders of magnitude better

than the linear methods. Perturbations’ accuracy is even more impressive. Other transversal

cuts at different technology levels reveal similar patterns.

We can summarize the information from Euler equation error functions in two comple-

mentary ways. First, following the advise of Judd and Guu (1997), we report the maximum

error in a set around the steady state. We pick a square given by capital between 70% and

130% of the steady state (23.14) and for a range of technology shocks from -0.065 to 0.065

(with zero being the level of technology in the deterministic case).16 The maximum Euler

error is useful as a measure of accuracy because it bounds the mistake that we are incurring

due to the approximation. Also, the literature on numerical analysis has found that maximum

errors are good predictors of the overall performance of a solution.

Table 5.4.1 presents the maximum Euler equation error for each solution method. We

can see how there are three levels of accuracy. Linear and log-linear, between -2 and -3, the

different perturbation and projection methods, all around -3.3, and value function around

-4.43. This table can be read as suggesting than, for this benchmark calibration, all methods

display acceptable behavior, with loglinear performing the worst of all and value function the

best.

The second procedure to summarize Euler equation errors is to combine them with the

information from the simulations to find the average error. This exercise is a generalization

of the Den Haan-Marcet test where, instead of using the conditional expectation operator,

we estimate an unconditional expectation using the population distribution. This integral is

a welfare measure of the loss induced by the use of the approximating method. Results are

also presented in Table 5.4.1.17

160.065 corresponds to roughly 99.5th percentile of the normal distribution given our parameterization. The
interval for capital includes virtually 100 percent of the stationary distributions as computed in the previous
subsection. Varying the interval for capital changes the size of the maximum Euler error but not the relative
ordering of the errors induced by each solution method.
17We use the distribution from Value Function Iteration. Since the distributions are nearly identical for all

methods, the table is also nearly the same if we use any other distributions. The only caveat is that using
that distribution slightly favors the integral from Value Function Iterations.
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The two sets of numbers in table 5.4.1 show that linearization in levels must be preferred

over loglinearization for the benchmark calibration. The problems of linearization are not as

much due to the presence of uncertainty but to the curvature of the exact policy functions.

Even with no uncertainty, the Euler equation errors of the linear methods (not reported here)

are very poor in comparison with the nonlinear procedures.

Table 5.4.1: Euler Errors

Absolute Max Euler Error (log10) Integral of the Euler Errors (x10−4)

Linear -2.8272 0.2291

Log-Linear -2.2002 0.6306

Finite Elements -3.3801 0.0537

Chebyshev -3.3281 0.0369

Perturbation 2 -3.3138 0.0481

Perturbation 5 -3.3294 0.0369

Value Function -4.4343 0.0224

We repeat our exercise for the extreme calibration. Figures 5.4.2 displays results for the

extreme calibration τ = 50, σ = 0.035, and z = 0 (again we have changed the capital interval

to make it representative). This shows the huge errors of the linear approximation in the

relevant parts of the state space. The plot is even worse error for the log-linear approximation.

Finite Elements still displays a robust and stable behavior over the state space. This result

is not a big surprise since the global character of the method allows it to pick the strong

nonlinearities induced by high risk aversion and high variance. Chebyshev’s performance is

also very good and delivers similar accuracies. The second and fifth order perturbations keep

their ground and perform relatively well for a while but then, around values of capital of 40,

they strongly deteriorate. Value Function Iteration delivers an uniformly high accuracy.

These findings are reinforced by Table 5.4.2. Again we report the absolute max Euler

error and the integral of the Euler equation errors computed as in the benchmark calibration

(except the bigger window for capital).18 From the table we can see three clear winners (Finite

Elements, Chebyshev, and Value Function) and a clear loser (log-linear) with the other results

somehow in the middle. The performance of loglinearization is disappointing. The max Euler

error implies an error of $1 for each $27 spent. In comparison, the maximum error of the

18As before, we use the stationary distribution of capital from Value Function Iteration. The results with
any of the other two global nonlinear method are nearly the same.
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linearization is one dollar for each $305. The poor performance of the perturbation is due to

the quick deterioration of the approximation outside the range of capital between 20 and 45.

Table 5.4.2: Euler Errors

Absolute Max Euler Error (log10) Integral of the Euler Errors (x10−4)

Linear -2.4825 7.12

Log-Linear -1.4315 24.37

Finite Elements -2.8852 0.34

Chebyshev -2.5269 0.22

Perturbation 2 -1.9206 7.76

Perturbation 5 -1.9104 8.91

Perturbation 2 (log) 1.7724 6.47

Value Function -4.015 0.32

5.5. Robustness of Results

We explored the robustness of our results with respect to changes in the parameter values.

Because of space constraints, we comment only on four of these robustness exercises, although

we perform a few more.

A first robustness exercise was to evaluate the four intermediate parametrizations de-

scribe above. The main lesson from those four cases was that they did not uncover any

non-monoticity of the Euler Equation Errors. As we moved, for example, towards higher

risk aversion, the first order perturbations began to deteriorate while non linear methods

maintained their high accuracy.

A second robustness exercise was to reduce to zero the variance of the productivity shock,

i.e., to make the model deterministic. The main conclusion was that first order perturbation

still induced relatively high Euler equation errors, while the nonlinear methods, specially

higher order perturbations, delivered Euler equation errors that were close to machine zero

along the central parts of the state space.

A third robustness exercise was to change the utility function to a log form. The results

in this case where very similar to our benchmark calibration. This is not surprising. Risk

aversion in the benchmark case was 1.357,19 while in the log case is 1. This small difference

in risk aversion implies small differences in policy rules and approximation errors between

19Given our utility function with leisure, the Arrow-Pratt coefficient of relative risk aversion is 1−θ(1− τ).
The calibrated values of τ = 1 and θ = 0.357 imply the risk aversion in the text.
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the benchmark calibration and the log case. With log utility linearization had a maximum

Euler error of -2.8798 and loglinearization of -2.0036. This was one the only case where

loglinearization did better than linearization. The nonlinear methods were all hovering around

-3.3 as in the benchmark case (for example, Finite Elements was -3.3896, Chebyshev -3.3435,

second order perturbation -3.3384, and so on).

A fourth robustness exercise was to reduce the discount factor, β, to 0.98. In this way

we generate an annual interest rate of 8.5%. The interest of this exercise was to check the

behavior of the solution methods in economies with high return to capital. Some economist

(Feldstein, xxx) have argued that these high interest rates are a better description of the data

than the lower 4% commonly used in quantitative exercises in macro. The results in this case

are also very similar to the benchmark case. First order perturbations cause maximum Euler

errors between -2 and -3 and the nonlinear methods around -3.26. The relative size and

ordering of errors is also the same.

We conclude from our robustness analysis that the lessons learned in this section are likely

to hold for a large region of parameter values.

5.6. Implementation and Computing Time

We briefly discuss implementation and computing time. Traditionally (for example Taylor

and Uhlig, 1990) computational papers have concentrated in the discussion of the running

times. Being an important variable, sometimes it is of minor relevance in comparison with

the programming and debugging time. A method that may run in a fraction of a second

but requires thousands a line of code may be less interesting than a method that takes a

minute but only has a few dozens of lines of code. Of course, programming time is a much

more subjective measure than running time but we feel that some comments are useful. In

particular we use lines of code as a proxy for the implementation complexity.20

The first order perturbation (in level and in logs) takes only a fraction of a second in a 1.7

Mhz Xeon PC running Windows XP (the reference computer for all times below), and it is

very simple to implement (less than 160 lines of code in Fortran 95 with generous comments).

Similar in complexity is the code for the higher order perturbations, around 64 lines of code

in Mathematica 4.1, although Mathematica is much less verbose. The code runs in between

2 and 10 seconds depending on the order of the expansion. This observation is the basis

20Unfortunately, as we explained before, the difficulties of Matlab and Fortran 95 to handle at the moment
higher order perturbations stops us from using only one programing language. We use Fortran 95 for all non
perturbation methods because of speed considerations.
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of our comment the marginal cost of perturbations over linearizations is close to zero. The

Finite Elements method is perhaps the most complicated method to implement: our code

in Fortran 95 has above 2000 lines and requires some ingenuity. Running time is moderate,

around 20 minutes, starting from conservative initial guesses and a slow update. Chebyshev

polynomials are an intermediate case. The code is much shorter, around 750 lines of Fortran

95. Computation time varies between 20 seconds and 3 minutes but it requires a good initial

guess for the solution of the system of equations. Finally, Value Function Iteration code is

around 600 lines of Fortran 95 but it takes between 20 and 250 hours to run.21

6. Conclusions

In this paper we have compared different solutionmethods for dynamic equilibrium economies.

We have found that higher order perturbation methods are an attractive compromise between

accuracy, speed, and programming burden, but they suffer from the need of computing an-

alytical derivatives and from some instabilities. In any case they must clearly be preferred

to linear methods. If such a linear method is required (for instance if we want to apply

the Kalman filter for estimation purposes), the results suggest that is better to linearize in

levels than in logs. The Finite Elements method is a robust, solid method that conserves

its accuracy over a long range of the state space and different calibrations. Also, it is per-

fectly suited for parallelization and estimation purposes (Fernández-Villaverde and Rubio,

2004). However, it is costly to implement and moderately intensive in running time. Cheby-

shev Polynomials share most of the good properties of Finite Elements if the problem is as

smooth as ours and it maybe easier to implement. However it is nor clear that this result

will generalize to less well-behaved applications.

We finish by pointing out to several lines of future research. First, the results in Williams

(2004) suggest that further work integrating perturbation method with small noise asymptot-

ics are promising. Second, we could explore newer nonlinear methods as the Adaptive Finite

Element method (Verfürth, 1996), the Weighted extended B-splines Finite Element approach

(Höllig, 2003), and Element-Free Galerkin Methods (Belytschko et al., 1996) that improve on

the basic Finite Elements approach exploiting local information and error estimator values.

21The exercise of fixing computing time and evaluating the accuracy of the solution delivered by each
method in that time is not very useful. Perturbation is in a different class of time requirements than Finite
Elements and Value Function Iteration (with Chebyshev somehow in the middle). Either we set such a short
amount of time that the results from Finite Elements and Value Function Iteration are meaningless, or the
time limit is not binding for perturbations and again the comparison is not informative.
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Figure 5.4.2 : Euler Equation Errors at z = 0, τ = 50 / σ = 0.035
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