# Appendix for Money and Capital 

S. Borağan Aruoba<br>University of Maryland

Christopher J. Waller

Federal Reserve Bank of St. Louis University of Notre Dame
Randall Wright
University of Wisconsin - Madison
Federal Reserve Bank of Minneapolis

February 4, 2011

## 1 Data

Our calibration frequency is annual. We use data for the period 1959-2004, extracted in 2005.

## Original series:

- Nominal consumption of non-durables (NCND): BEA - Table 1.1.5.
- Nominal consumption of services (NCS): BEA - Table 1.1.5.
- Nominal fixed investment (NFI): BEA - Table 1.1.5.
- Nominal government consumption expenditures and gross investment (NG) : BEA Table 1.1.5.
- Nominal stock of nonresidential private fixed assets (NNRFA): BEA
- Nominal stock of residential private fixed assets (NRFA): BEA
- GDP Deflator (DEF): Ratio of nominal GDP (BEA - Table 1.1.5) to real GDP (BEA - Table 1.1.6)
- Nominal money stock (NM) : Quarterly sweep-adjusted M1, averaged over the year. (obtained from www.sweepmeasures.com, Cynamon et al. (2006))
- Monetary Base (MB) : Monthly St. Louis adjusted monetary base, averaged over the year (FRED - AMBSL)
- Currency Component of M1 (CUR) : Average of monthly measure (FRED - CURRSL)
- M2 (M2) : Average of monthly measure (FRED - M2SL)
- Nominal compensation of employees (COMP) : BEA
- Nominal national income (NI) : BEA
- Nominal proprietors' income (PI) : BEA
- Nominal interest rate (INT) : Corporate Bonds (Moody's) - Aaa Rated from Economic Report to the President 2005 - Table B.73.
- Labor and Capital Income Taxes : Average of the rates reported in McGrattan et al. (1997) over the period 1959-1992.
- Consumption Tax : Average of sum of excise and sales taxes over personal consumption expenditures over 1951-2003.


## Derived model-consistent series:

- Real consumption of non-durables (RCND): NCND / DEF
- Real consumption of services (RCS):NCS / DEF
- Real fixed investment (RFI): NFI / DEF
- Real government consumption expenditures and gross investment (G) : NG / DEF
- Real stock of nonresidential private fixed assets (RNRFA): NNRFA / DEF
- Real stock of residential private fixed assets (RRFA): NRFA / DEF
- Real investment (I) : RFI
- Real GDP (Y) : RCND + RCS + RFI + RG
- Capital Stock (K) : RNRFA + RRFA
- Real money stock (M) : NM / DEF
- Velocity (VEL) : Y / M
- Inflation (INFL) : Percentage change in DEF
- Labor share (LS) : COMP / (NI - PI) which follows from LS $=(\mathrm{COMP}+\mathrm{LS} \times \mathrm{PI})$ / NI

Using $\tau^{b}=0.3$ for tax rate on bond returns from NBER TAXSIM, we compute the after-tax real return as

$$
\begin{equation*}
\rho=\left(1-\tau^{b}\right)\left[\frac{1+I N T}{1+I N F L}-1\right]=0.028 \tag{1}
\end{equation*}
$$

and after-tax nominal return is $6.63 \%$.
For interest rate semi-elasticity of money demand, we estimate

$$
\begin{equation*}
\log \left(M_{t}\right)=\alpha+\beta_{i} I N T_{t}+\beta_{y} \log \left(Y_{t}\right)+d_{r}(L) \Delta I N T_{t}+d_{y}(L) \Delta \log \left(Y_{t}\right)+\varepsilon_{t} \tag{2}
\end{equation*}
$$

following Stock and Watson (1993) and Ball (2001) where $d_{r}(L)$ and $d_{y}(L)$ are lag polynomials with 2 leads and 2 lags, estimated using dynamic least squares (DOLS). The estimate for $\beta_{i}$ is -0.064 , with p -value 0.00 .

For interest rate semi-elasticity of investment, we estimate

$$
\begin{equation*}
\log \left(I_{t}\right)=\alpha+\beta_{y} \log \left(Y_{t}\right)+\beta I N T_{t}+d_{r}(L) \Delta I N T_{t}+d_{y}(L) \Delta \log \left(Y_{t}\right)+\varepsilon_{t} \tag{3}
\end{equation*}
$$

using DOLS as described above (with 14 lags and no leads, as selected by AIC), on quarterly U.S. data from 1959Q1-2007Q4. This yields $\beta_{i}=-0.0059$, with p-value 0.03 .

## 2 Alternative Models

### 2.1 Two Capital Goods

Suppose that $k_{C}$ is used in production in the CM and $k_{D}$ in the DM, but both are produced in the CM. They depreciate at rates $\delta_{C}$ and $\delta_{D}$. For illustration, there is no tax on $k_{D}$, and we present only the bargaining version (price taking is similar). Also, to reduce notation, we set $\omega=1$. The CM problem is

$$
\begin{aligned}
W\left(m, k_{C}, k_{D}\right)= & \max _{x, h, m_{+1}, k_{C+1}, k_{D+1}}\left\{U(x)-A h+\beta V\left(m_{+1}, k_{C+1}, k_{D+1}\right)\right\} \\
\text { s.t. }\left(1+t_{x}\right) x= & w\left(1-t_{h}\right) h+\left[1+\left(r-\delta_{C}\right)\left(1-t_{k}\right)\right] k_{C}-k_{C+1}-T+\frac{m-m_{+1}}{p} \\
& +\left(1-\delta_{D}\right) k_{D}-k_{D+1} .
\end{aligned}
$$

Eliminating $h$ using the budget equation, we have the FOC

$$
\begin{aligned}
x & : U^{\prime}(x)=\frac{A\left(1+t_{x}\right)}{w\left(1-t_{h}\right)} \\
m_{+1} & : \frac{A\left(1+t_{x}\right)}{p w\left(1-t_{h}\right)}=\beta V_{m}\left(m_{+1}, k_{C+1}, k_{D+1}\right) \\
k_{+1} & : \frac{A}{w\left(1-t_{h}\right)}=\beta V_{k}\left(m_{+1}, k_{C+1}, k_{D+1}\right) \\
z_{+1} & : \frac{A}{w\left(1-t_{h}\right)}=\beta V_{z}\left(m_{+1}, k_{C+1}, k_{D+1}\right) .
\end{aligned}
$$

The envelope conditions for $W_{m}, W_{k}$ and $W_{z}$ are derived in the obvious way, and the usual logic implies the distribution of $\left(m, k_{C}, k_{D}\right)$ is degenerate leaving the CM. The DM is as before, except we replace $c(q, k)$ with $c\left(q, k_{D}\right)$ and $g(q, k)$ with $g\left(q, k_{D}\right)$. The value function in the DM and the envelope conditions for $V_{m}, V_{k}$ and $V_{z}$ are derived in the obvious way. This leads to

$$
\begin{align*}
\frac{g\left(q, K_{D}\right)}{M} & =\frac{\beta g\left(q_{+1}, K_{D+1}\right)}{M_{+1}}\left[1-\sigma+\sigma \frac{u^{\prime}\left(q_{+1}\right)}{g_{q}\left(q_{+1}, K_{D+1}\right)}\right]  \tag{4}\\
U^{\prime}(X) & =\beta U^{\prime}\left(X_{+1}\right)\left\{1+\left[F_{K}\left(K_{C+1}, H_{+1}\right)-\delta_{C}\right]\left(1-t_{k}\right)\right\}  \tag{5}\\
U^{\prime}(X) & =\beta U^{\prime}\left(X_{+1}\right)\left[1-\delta_{D}-\frac{\left(1+t_{x}\right) \sigma \gamma\left(q_{+1}, K_{D+1}\right)}{U^{\prime}\left(x_{+1}\right)}\right]  \tag{6}\\
U^{\prime}(X) & =\frac{A\left(1+t_{x}\right)}{F_{H}\left(K_{C}, H\right)\left(1-t_{h}\right)}  \tag{7}\\
X+G & =F\left(K_{C}, H\right)+\left(1-\delta_{C}\right) K_{C}-K_{C+1}+\left(1-\delta_{D}\right) K_{D}-K_{D+1} \tag{8}
\end{align*}
$$

where $\gamma(\cdot)$ is defined in (29) in the paper. An equilibrium is given by (positive, bounded) paths for ( $q, K_{C+1}, K_{D+1}, H, X$ ) satisfying (4)-(8).

### 2.2 Capital Acquired in the DM

Here new $k$ is acquired in the DM. Agents do not consume DM output $q$, but use it as an input that is transformed one-for-one into $k$, an input to CM production. Each period a fraction $\sigma$ of agents in the DM can produce $q$, and a fraction $\sigma$ can transform it into $k$. Although agents cannot acquire new capital in the CM, they are allowed to trade used capital. Let $k$ be the amount of capital held by an agent entering the CM and $k_{+1}^{\prime}$ the amount of capital taken out, into the next DM. The CM problem is

$$
\begin{aligned}
W(m, k) & =\max _{x, h, m_{+1}, k_{+1}^{\prime}} U(x)-A h+\beta V_{+1}\left(m_{+1}, k_{+1}^{\prime}\right) \\
\text { s.t. }\left(1+t_{x}\right) x & =w\left(1-t_{h}\right) h+\left[r-(r-\delta) t_{k}\right] k+(1-\delta) \phi k-\phi k_{+1}^{\prime}-T+\frac{m-m_{+1}}{p}
\end{aligned}
$$

where $\phi$ is the goods price of used capital in terms of $x$. The FOC are:

$$
\begin{align*}
x & : U^{\prime}(x)=\frac{A\left(1+t_{x}\right)}{w\left(1-t_{h}\right)} \\
m_{+1} & : \frac{A}{p w\left(1-t_{h}\right)}=\beta V_{+1, m}\left(m_{+1}, k_{+1}^{\prime}\right)  \tag{9}\\
k_{+1}^{\prime} & : \frac{A \phi}{w\left(1-t_{h}\right)}=\beta V_{+1, k}\left(m_{+1}, k_{+1}^{\prime}\right)
\end{align*}
$$

The envelope conditions are obtained as usual. Buyers in the DM spend all their money, and bring $k=k^{\prime}+q$ to the CM. The bargaining solution implies $q$ solves $m_{b} / p=g(q, r, w, \phi)$ where

$$
g(q, r, w, \phi) \equiv \frac{\left(1-t_{h}\right) w\left[\theta c(q)+(1-\theta) c^{\prime}(q) q\right]\left[r-(r-\delta) t_{k}+(1-\delta) \phi\right]}{\theta A\left[r-(r-\delta) t_{k}+(1-\delta) \phi\right]+(1-\theta)\left(1-t_{h}\right) w c^{\prime}(q)}
$$

In the DM, we have

$$
V\left(m, k^{\prime}\right)=W\left(m, k^{\prime}\right)+\sigma\left\{\frac{A\left[r-(r-\delta) t_{k}+(1-\delta) \phi\right] q(m)}{w\left(1-t_{h}\right)}-\frac{A m}{p w\left(1-t_{h}\right)}\right\}+\sigma E\left\{\frac{A \tilde{m}}{p w\left(1-t_{h}\right)}-c[q(\tilde{m})]\right\},
$$

where the expectation is with respect to the money holdings $\tilde{m}$ of agents and we assume you visit one at random. Then

$$
\begin{aligned}
V_{m}\left(m, k^{\prime}\right) & =\frac{(1-\sigma) A}{p w\left(1-t_{h}\right)}+\frac{\sigma\left[r-(r-\delta) t_{k}+(1-\delta) \phi\right]}{p w\left(1-t_{h}\right) g_{q}(q, r, w, \phi)} \\
V_{k}\left(m, k^{\prime}\right) & =\frac{A\left[r-(r-\delta) t_{k}+(1-\delta) \phi\right]}{\left(1-t_{h}\right) w}
\end{aligned}
$$

Since $V_{m}$ is independent of $k^{\prime}$, the FOC for $m_{+1}$ in (9) implies $m_{+1}$ is independent of $k_{+1}^{\prime}$ and hence degenerate. Now the analog to (30) in the paper is

$$
\begin{equation*}
\frac{\hat{g}(q, K, H, \phi)}{F_{H}(K, H) M}=\frac{\beta \hat{g}\left(q_{+1}, K_{+1}, H_{+1}, \phi_{+1}\right)}{F_{H}\left(K_{+1}, H_{+1}\right) M_{+1}}\left[1-\sigma+\sigma \Xi\left(q_{+1}, K_{+1}, H_{+1}, \phi_{+1}\right)\right] \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\hat{g}(q, K, H, \phi) & \equiv g\left[q, F_{K}(K, H), F_{H}(K, H), \phi\right] \\
\Xi(q, K, H, \phi) & \equiv \frac{F_{K}(K, H)\left(1-t_{k}\right)+\delta t_{k}+(1-\delta) \phi}{\hat{g}(q, K, H, \phi)} .
\end{aligned}
$$

The FOC for $k_{+1}^{\prime}$ is

$$
\begin{equation*}
\frac{\phi}{F_{H}(K, H)}=\frac{\beta\left[F_{K}\left(K_{+1}, H_{+1}\right)\left(1-t_{k}\right)+\delta t_{k}+(1-\delta) \phi_{+1}\right]}{F_{H}\left(K_{+1}, H_{+1}\right)}, \tag{11}
\end{equation*}
$$

which is an arbitrage condition that implies the demand for $k_{+1}^{\prime}$ is indeterminate. Hence we
can set $k_{+1}^{\prime}=(1-\delta) K$ for all agents, so $\left(m_{+1}, k_{+1}^{\prime}\right)$ is degenerate. The other conditions are

$$
\begin{align*}
K_{+1} & =(1-\delta) K+\sigma q_{+1}  \tag{12}\\
U^{\prime}(X) & =\frac{A\left(1+t_{x}\right)}{\left(1-t_{h}\right) F_{H}(K, H)}  \tag{13}\\
X+G & =F(K, H) \tag{14}
\end{align*}
$$

An equilibrium is given by paths for $\left(q, \phi, K_{+1}, H, X\right)$ satisfying (10)-(14).

