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Abstract
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1 Introduction

In the last decade search-theoretic models of money have become the dominant framework for

studying monetary theory. Contrary to traditional monetary models, trade is decentralized and

carried out bilaterally. Since Shi (1995) and Trejos and Wright (1995), the standard approach for

determining the terms of trade in bilateral matches is to impose the generalized Nash solution,

or to use a strategic bargaining game that yields a similar outcome.1 Recent extensions to allow

for policy analysis by Shi (1997) and Lagos and Wright (2005) produce new results regarding the

optimality of the Friedman rule and the welfare cost of inflation. It is unclear, however, whether

these new results are robust predictions of models with search and bargaining or if they are driven

by the choice of a particular bargaining solution.

We show that the bargaining solution does matter both qualitatively and quantitatively for

questions of first-degree importance in monetary economics such as: (i) the efficiency of monetary

equilibrium, (ii) the optimality of the Friedman rule and (iii) the welfare cost of inflation. We show

that the results of Shi and Lagos and Wright are in fact very sensitive, qualitatively and quanti-

tatively, to the use of the Nash bargaining solution and that other axiomatic bargaining solutions,

such as the egalitarian (or proportional) solution proposed by Kalai (1977), yield dramatically

different results.2,3

Regarding the efficiency of monetary equilibrium, a key result in LW is that the Friedman rule

cannot replicate the first-best allocation and output is inefficiently low unless buyers have all the

bargaining power. This inefficiency has been attributed to a holdup problem. The difficulty with

this argument is that a holdup problem requires an irreversible ex ante investment cost and some

opportunistic ex post appropriation of the surplus from trade, which typically results from ex post

bargaining. In a monetary model the irreversible investment cost occurs when money is costly to

hold due to a positive nominal interest rate. But at the Friedman rule the nominal interest rate is

zero so money is costless to hold and there is no sunk cost to be ‘held up’. Thus the inefficiency

1For a related literature on alternative trading mechanisms in search-theoretic models of monetary exchange, see
Coles and Wright (1998), Rupert, Schindler and Wright (2001), Curtis and Wright (2004), Rocheteau and Wright
(2005) and Julien, Kennes and King (2006).

2While we only compare the Nash solution to the egalitarian solution in this paper, in our earlier working paper,
Aruoba, Rocheteau and Waller (2006), we also studied the Kalai-Smorodinsky (1975) solution.

3For our purpose, the axiomatic approach to bargaining has the advantage of focusing directly on the properties
of the solutions that matter for the (in)efficiency of monetary equilibrium. It complements the mechanism design
approach of monetary exchange that considers as admissible all trading mechanisms that satisfy agents’ individual
rationality constraints (Kocherlakota, 1998; Wallace, 2001). It should also be noted that we do not attempt to derive
or justify our axiomatic solutions as outcomes of non-cooperative since this is not the focus of our analysis.
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identified by LW at the Friedman rule cannot be the result of a holdup problem.4 We show that, in

fact, LW’s result is a consequence of the lack of strong monotonicity of the Nash bargaining solution.

The property of strong monotonicity requires agents’ payoffs to be monotonically increasing as the

bargaining set expands.5 It is particularly relevant in a monetary context since the role of money

is precisely to enlarge the set of incentive-feasible outcomes. To emphasize this point, we prove

that the monetary equilibrium is efficient at the Friedman Rule under any strongly monotonic

bargaining solution such as the egalitarian (or proportional) solution.

Next, we study how the bargaining solution matters for determining the optimal monetary pol-

icy. One of the main insights of Shi (1997) is that deviations from the Friedman rule can be optimal

in search economies –an unusual finding for most monetary models– when the composition of

the market in terms of buyers and sellers is endogenous. The potentially positive effect of infla-

tion on participation decisions (extensive margin) can outweigh the negative effect on quantities

exchanged (intensive margin) in bilateral matches. The latter distortion is of second-order magni-

tude provided that the Friedman rule maximizes each trade surplus. The validity of this envelope

argument, however, critically depends on the monotonicity properties of the bargaining solution:

for instance, it fails to hold under Nash bargaining. As a consequence, the Friedman rule is more

likely to be suboptimal when terms of trade are determined in accordance with the proportional

solution instead of the Nash solution.

Last but not least, we show that the choice of the bargaining solution also matters for quantita-

tive issues such as measuring the welfare cost of inflation. Numerous papers have shown that search

models generate much higher estimates of the welfare cost of inflation [see Craig and Rocheteau

(2006)]. For instance, LW find that the welfare cost of 10% inflation (relative to price stability)

under Nash bargaining is larger than 3% of GDP. They attribute this large welfare cost of inflation

to the inability of the Friedman rule to generate the first-best allocation. We show that the welfare

cost of 10% inflation in the LW model is equally large, more than 3% of GDP, for both the Nash and

the egalitarian solutions, irrespective of the ability of the Friedman rule to generate the first-best

4While the notion of holdup problem can cover a variety of situations, a key principle is the presence of sunk
investment costs that are irrelevant in the bargaining. Because the investing party is not able to appropriate the full
return to his (marginal) investment, he underinvests. See, e.g., the seminal paper by Grout (1984). The sunkness of
the investment usually arises because of the relationship-specific nature of the investment or because of the presence
of trading frictions that prevent the investing party from finding an alternative use for his asset costlessly. Money is
not a relationship-specific asset and, in LW, it can be spent in a centralized market at no cost when the monetary
authority deflates at a rate equal to agents’ rate of time preference.

5The different notions of monotonicity (strong, weak and individual) for bargaining solutions and their importance
for economic applications are discussed in Chun and Thomson (1988).
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allocation (and over 5% of GDP under generalized Nash and proportional bargaining). However,

the sharp contrast between bargaining solutions comes from the welfare gains of implementing the

optimal deflation (e.g., reducing the inflation rate from zero to the Friedman rule). This welfare

gain is about 0.9% of GDP under Nash bargaining compared to 0.4% under the egalitarian solution.

When calibrating the buyer’s bargaining power to fit the markup, this gain is up to 2.1% of GDP

under the generalized Nash solution compared to 0.5% of GDP under the proportional solution.

The paper is organized as follows. Section 2 describes the environment. In Section 3 we define

the bargaining problem in a match and the axiomatic bargaining solutions we consider. Section 4

contains the characterization of steady-state monetary equilibria and results regarding efficiency.

The properties of the bargaining solutions are shown to matter for the optimal monetary policy in

Section 5 while we examine the welfare cost of inflation in Section 6. Finally, Section 7 summarizes.

2 The benchmark model

The environment of the benchmark model is similar to the one in Lagos and Wright (2005) —

denoted LW hereafter. Time is discrete and continues forever. There is a continuum of infinitely-

lived agents with measure one. Each period is divided into two trading subperiods. In the first

subperiod agents trade in a decentralized market, denoted DM, while in the second subperiod they

trade in a centralized market, denoted CM. In the DM, agents are specialized in terms of the goods

they produce and consume. Furthermore they are matched bilaterally: each agent meets someone

who produces a good he wishes to consume with probability σ ≤ 1/2 and meets someone who

likes the good he produces with the same probability σ. With probability 1 − 2σ an agent has
no opportunity to trade. (In Section 5, following Shi (1997) we endogenize the composition of

the market in terms of buyers and sellers.) For simplicity, we rule out double-coincidence-of-wants

meetings. When paired in the DM, agents bargain over the terms of trade. In the CM, all agents

can produce and consume the same good. Prices in the CM are Walrasian so agents trade goods,

labor and money taking prices as given. Output in the CM is produced by a linear production

function in labor, which implies the (real) wage rate is equal to 1.

Instantaneous utility of an agent is u(qb) −ψ(qs)+U(c)− h, where qb and qs are the quantities

consumed and produced in the DM while c is consumption and h is the supply of hours in the

CM. Until Section 6 where we calibrate the model, we assume U(c) = c. The utility function is

well-behaved and q∗ denotes the solution to u0 (q∗) = ψ0 (q∗), which is the efficient DM quantity.

All agents have the same discount factor β ≡ (1 + r)−1 ∈ (0, 1).
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The quantity of fiat money per capita at the beginning of period t is Mt > 0. We assume

Mt+1 = γMt, where γ ≡ 1+ π is constant and new money is injected by lump-sum transfers in the

CM. The price of goods in terms of money in the CM is pt. We restrict our attention to steady-

state equilibria where the real value of aggregate money balances M/p is constant. This implies

pt+1 = γpt. For notational simplicity, we omit time indices and replace t+ 1 by +1 and so on.

Bellman’s equation for an agent in the DM holding z = m/p units of real balances is

V (z) = σ

Z
{u [q(z, z̃)] +W [z − d (z, z̃)]} dF (z̃)

+σ

Z
{−ψ [q (z̃, z)] +W [z + d (z̃, z)]} dF (z̃) + (1− 2σ)W (z), (1)

where F (z̃) is the distribution of real balances across agents, and W (z) is the value function of

the agent in the CM. Equation (1) has the following interpretation. An agent meets someone who

produces a good he likes with probability σ. He consumes q units of goods and delivers d units

of real balances (expressed in terms of CM output) to his trading partner. The terms of trade

(q, d) depend on his real balances z and the real balances z̃ of his partner in the match. With

probability σ, the agent meets someone who likes his good and becomes a seller. He produces q

for his trading partner and receives d real balances. With probability 1− 2σ, no trade takes place.
The CM problem of the agent is

W (z) = max
ẑ
{T + z − γẑ + βV (ẑ)} , (2)

where T the lump-sum transfer (expressed in general goods), and ẑ the real balances taken into

the next day.6 We have used the budget constraint according to which the net CM consumption is

c = h+z+T −γẑ and the relative price of real balances next period in terms of current-period CM
output is p+1/p = γ. From (2), the maximizing choice of ẑ is independent of z; and W is linear in

z with Wz = 1. Substituting V (ẑ) by its expression given by (1), using the linearity of W (z) and

ignoring the constant terms, we can reformulate the buyer’s problem as

max
ẑ

½
−γẑ + β

½
σ

Z
{u [q(ẑ, z̃)]− d (ẑ, z̃)} dF (z̃) + σ

Z
{d (z̃, ẑ)− ψ [q (z̃, ẑ)]} dF (z̃) + ẑ

¾¾
.

Divide the previous expression by β and denote i the nominal interest rate given by 1 + i =

(1 + π)(1 + r) to get:

max
ẑ

½
−iẑ + σ

Z
{u [q(ẑ, z̃)]− d (ẑ, z̃)} dF (z̃) + σ

Z
{d(z̃, ẑ)− ψ[q(z̃, ẑ)]} dF (z̃)

¾
(3)

6Note that m̂/p = (p+1/p) (m̂/p+1) = γẑ.
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3 Bargaining

The prime focus of this paper is the study of alternative bargaining solutions in a model of monetary

exchange. Thus, in this section we define and carefully characterize the bargaining problem for

determining the terms of trade in a match between a buyer holding z units of real balances and

a seller holding z̃ units of real balances. We show how to apply two main bargaining solutions

identified in the axiomatic literature — the Nash and egalitarian solutions — to our problem.7 These

two solutions differ in terms of their monotonicity properties: The Nash solution does not have

a monotonicity axiom while the egalitarian solution is strongly monotonic. We will discuss how

monotonicity of the solution is relevant in the context of our model.

3.1 The bargaining problem

An agreement is a pair (q, d) where q is the amount of goods produced by the seller and d is the

amount of real money transferred by the buyer to the seller. The monetary transfer is constrained

by the real balances of the buyer and the seller, i.e., −z̃ ≤ d ≤ z. If an agreement is reached then the

utility of the buyer is ub = u(q)+W (z−d) whereas the utility of the seller is us = −ψ(q)+W (z̃+d).

If no agreement is reached, the utility of the buyer is ub0 = W (z) and the utility of the seller is

us0 =W (z̃). While ub0 and u
s
0 are taken as given within the bargaining problem, they are endogenous

in equilibrium.

From the linearity of W (z), ub = ub0+u(q)−d and us = us0+d−ψ(q). In order to illustrate the
role of money, suppose that the buyer is restricted not to spend more than τ ≤ z real balances.8

The set S(τ) of feasible utility levels associated with this problem is

S(τ) =
n
(u(q)− d+ ub0, d− ψ(q) + us0) : d ∈ [−z̃, τ ] and q ≥ 0

o
The equation for the Pareto frontier of S is derived from the program ub = maxq,d [u(q)− d] + ub0

s.t. −ψ(q) + d ≥ us − us0 and d ≤ τ for some us. It satisfies

us − us0 =

½
u(q∗)− ψ(q∗)− (ub − ub0) if us − us0 ≤ τ − ψ(q∗)
z − ψ

£
u−1(ub − ub0 + τ)

¤
otherwise

(4)

7 In our earlier working paper, we also studied the Kalai-Smorodinsky (1975) bargaining solution in the LW
framework. Despite being based on an axiom of individual monotonicity, both the qualitative and quantitative
results are nearly identical to those obtained from the Nash solution. What matters for the result is the property of
strong monotonicity as emphasized by Kalai (1977). Thus, for presentation purposes, we omit it here.

8For instance, the buyer could only bring a fraction of his monetary wealth into a match. For an example of a
model where this is the case, see Lagos and Rocheteau (2006).
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Therefore, d2us/(dub)2 = 0 if us ≤ τ − ψ(q∗) and d2us/(dub)2 < 0 otherwise. The Pareto-frontier

is linear when q = q∗ and it is strictly concave whenever q < q∗.

In Figure 1, we represent the bargaining set S(τ) for τ3 > τ2 > τ1. We denote ∆∗ = u(q∗) −
ψ(q∗) the maximum surplus of a match. Note that the bargaining set expands as the buyer brings

more money, i.e., S(τ1) ⊂ S(τ2) ⊂ S(τ3). This transformation of the bargaining set illustrates the
fact that fiat money allows traders to achieve utility and output levels that would not be attainable

otherwise.

In the following, we will assume that money holdings are common knowledge in a match, and

agents cannot commit to spend less than their monetary wealth, i.e., τ = z. Formally, a bargaining

problem is a pair (S, u0) where S is the set of feasible utility levels and u0 = (ub0, u
s
0) is the

disagreement outcome. A solution to the bargaining problem is a function µ that assigns a pair of

utility levels to every bargaining game.

su

bu

)S( 1τ

)S( 2τ

)S( 3τ

),( 00
sb uu

*0 ∆+su

*0 ∆+bu

Figure 1: The bargaining set

3.2 The Nash solution

The Nash (1950) solution, µN , is the unique solution that satisfies the axioms of Pareto optimality,

scale invariance, symmetry and independence of irrelevant alternatives. It is given by

µN (S, u0) = arg max
(ub,us)∈S

(ub − ub0) (u
s − us0) . (5)
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This solution is illustrated graphically in Figure 2. It is at the tangency point of the bargaining set

S and a Nash product curve representing the points us − us0 = N/(ub − ub0) for some N ≥ 0. Since
ub − ub0 = u(q)− d and us − us0 = −ψ(q) + d, (q, d) satisfies

(q, d) = argmax
q,d

[u(q)− d] [−ψ(q) + d]

subject to d ≤ z. The solution is q = q∗ and d = z∗ if z ≥ z∗ ≡ [u(q∗) + ψ(q∗)] /2, and d = z and

z = z(q) ≡ u0(q)ψ(q) + ψ0(q)u(q)

u0(q) + ψ0(q)
, (6)

otherwise. Note that the buyer’s surplus from a match is given by u(q)− z(q) = Θ(q)[u(q)− ψ(q)]

where Θ(q) = u0(q)/[u0(q) + ψ0(q)] is the share of the buyer. It is easy to show that u(q)− z(q) is

non-monotonic in q and negatively sloped in the vicinity of q = q∗. This is illustrated in Figure 2

where the buyer’s utility falls (ub2 < ub1) as the bargaining set expands.

su

bu
bb uu 12 <),( 00

sb uu *0 ∆+bu

*0 ∆+su

Figure 2: Nash solution

In a sense, by taking an action that expands the Pareto frontier an agent can be punished for

doing so even though both parties can be made better off. This is a troubling attribute for the

Nash solution that, as we will show, has serious implications for monetary search models.
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Finally, if we relax the axiom of symmetry, we obtain the generalized Nash solution para-

meterized by θ ∈ [0, 1], the buyer’s bargaining weight. In this case (q, d) maximizes [u(q)− d]θ

[−ψ(q) + d]1−θ and the solution to the bargaining problem remains the same as before with z(q)

defined as follows:

z(q) =
θu0(q)ψ(q) + (1− θ)ψ0(q)u(q)

θu0(q) + (1− θ)ψ0(q)
. (7)

3.3 The egalitarian solution

The egalitarian solution (Luce and Raiffa, 1957; Kalai, 1977) imposes a notion of monotonicity,

strong monotonicity, according to which no players are made worse-off if additional alternatives

are made available to them.9 Consider two bargaining problems (S1, u0) and (S2, u0) such that
S1 ⊆ S2. Then, a solution µ is strongly monotonic iff µ (S1) ≤ µ (S2). Kalai (1977) showed

that the unique solution that satisfies Pareto optimality, symmetry and strong monotonicity is the

egalitarian solution.10 In our context, the egalitarian solution implies

ub − ub0 = us − us0, (8)

and (ub, us) lies in the Pareto-frontier of S.11 In Figure 3, the egalitarian solution is at the inter-
section of the 45o-line and the Pareto frontier of S.

Formally, (q, d) solves

(q, d) = argmax
q,d
[u(q)− d] (9)

s.t. u(q)− d = d− ψ(q), (10)

and d ≤ z. So, one can think of the buyer as choosing an offer so as to maximize his own surplus

from trade subject to the constraint that the match surplus is shared evenly between the buyer

and the seller. Substituting d by its expression as a function of q from (9), this problem can be

9Strong monotonicity does not require that all players benefit equally from the expansion of the bargaining set.
Some expansions may be skewed in favor of a particular agent in which case this agent may benefit more from the
presence of new opportunities.

10 In contrast to the Nash solution, the egalitarian solution is not scale invariant — it is invariant only under
simultaneous rescaling of the utility functions of the two players with the same rescaling factor. See the discussion
in Kalai (1977) and Kalai and Samet (1985).

11Thomson and Myerson (1980) have characterized the class of bargaining solutions, named the monotone path
solutions, that satisfy Pareto optimality and strong monotonicity.
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simplified to

q = argmax
q

∙
u(q)− ψ(q)

2

¸
(11)

u(q) + ψ(q)

2
≤ z. (12)

From (11)-(12), q = q∗ and d = z∗ if z ≥ z∗ ≡ [ψ(q∗) + u(q∗)] /2, and d = z with

z = z(q) ≡ ψ(q) + u(q)

2
, (13)

otherwise.

su

bu
),( 00

sb uu

45o

bb uu 21 <

su1

su 2

*0 ∆+bu

*0 ∆+su

Figure 3: Egalitarian solution

Dropping the axiom of symmetry, we obtain the proportional solution (Kalai, 1977) that satisfies

(q, d) = argmax
q,d
[u(q)− d] (14)

s.t. [u(q)− d] =
θ

1− θ
[d− ψ(q)] , (15)

and d ≤ z, where θ ∈ [0, 1]. Then, we get the same solution with

z(q) = (1− θ)u(q) + θψ(q). (16)

10



4 Efficiency of monetary equilibrium

In this section, we study the existence and efficiency of monetary equilibrium for a class of bargaining

solutions that encompasses the ones described in Section 3. We restrict our attention to bargaining

solutions with the following properties. The outcome is independent of the seller’s real balances

and can be represented by a continuous and strictly increasing function z(q) such that the following

is true: For all z ≤ z∗ = z(q∗), d = z and q is implicitly defined by z = z(q); for all z > z∗, q = q∗

and d ≥ z∗.12 The function z(q) is given by (6) for the Nash solution and by (13) for the egalitarian

solution.

Since q = q∗ and d ≥ z∗ for all z ≥ z∗ a buyer’s optimal choice of real balances is such that

z ≤ z∗ for all i > 0. Using the fact that q(z, z̃) is independent of z̃, the agent’s problem (3) can

then be reformulated as

max
ẑ∈[0,z∗]

{−iẑ + σ {u [q(ẑ)]− ẑ}} .

Finally, since there is a bijection between z and q, it is equivalent to express the agent’s problem

as a choice of q

max
q∈[0,q∗]

{−iz(q) + σ [u(q)− z(q)]} . (17)

The maximization problem in (17) has a simple interpretation. The agent chooses a q that maxi-

mizes his expected surplus as a buyer minus the cost of holding the real balances that are necessary

to buy q. If (17) has more than one solution, we restrict our attention to symmetric equilibria

where all agents choose the same real balances.

A steady-state monetary equilibrium is a q > 0 solving (17). The objective function in (17)

is continuous and maximized over a compact set, so a solution exists. In order to guarantee the

existence of a monetary equilibrium, assume u(q∗) − z(q∗) > 0, i.e., buyers get a positive surplus

if q = q∗. At i = 0, the solution to (17) is strictly positive since maxq∈[0,q∗] {σ [u(q)− z(q)]}
≥ σ [u(q∗)− z(q∗)] > 0. Since maxq∈[0,q∗] {−iz(q) + σ [u(q)− z(q)]} varies continuously with i,

there is an ı̄ > 0 such that a steady-state monetary equilibrium exists for all i < ı̄. For instance,

under the proportional solution, the threshold for the nominal interest rate is ı̄ = θσ/(1− θ).

12To see this that the outcome of the bargaining problem does not depend on the seller’s real balances, normalize
the utility functions to assign zero utility to the two players in case no agreement is reached, u0 = (0, 0). The set S̄
of incentive-feasible utility levels is then

S̄ = {(u(q)− d, d− ψ(q)) : ψ(q) ≤ d ≤ u(q), d ≤ z and q ∈ [0, q∗]} .

Since S̄, u0 is independent of z̃, a bargaining solution that maps S̄, u0 into an element of S̄ is independent of the
seller’s real balances.
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We now investigate some implications of the choice of the bargaining solution for the efficiency

of monetary equilibrium.

Proposition 1 (i) There exists an equilibrium with q = q∗ at i = 0 iff q∗ is a maximizer of

u(q)− z(q) over [0, q∗]. (ii) If u(q)− z(q) is (strictly) increasing over [0, q∗] then q = q∗ is an (the)

equilibrium at i = 0. (iii) Assuming z(q) is differentiable, if u0(q∗) < z0(q∗) then q = q∗ is not an

equilibrium for any i ≥ 0.

Proof. Direct from (17).

According to part (i) of Proposition 1, the equilibrium is efficient if the buyer’s surplus u(q)−z(q)
is maximum at q = q∗, the value of q that maximizes the surplus of a match. According to part (ii)

of Proposition 1, this condition is satisfied if the bargaining solution is such that the buyer’s payoff is

increasing in q over [0, q∗]. A sufficient condition for this requirement to hold is that the bargaining

solution is strongly monotonic since a higher z generates an expansion of the bargaining set and

therefore a higher payoff for both players. In contrast, as indicated by part (iii) of Proposition 1,

if the solution is non-monotonic, and if the buyer’s surplus decreases when q gets close to q∗, then

the Friedman rule fails to achieve the efficient allocation.

The next Corollary uses Proposition 1 to establish the ability, or inability, of the Friedman

rule to generate the first-best allocation under the two standard bargaining solutions described in

Section 3.

Corollary 1 For all i ≥ 0, equilibria under the Nash solution are inefficient, i.e. q < q∗. Equilibria

under the egalitarian solution are efficient iff i = 0.

Proof. Consider first the Nash solution. From Proposition 1, it is sufficient to show that

u0(q∗) < z0(q∗). Recall that u(q) − z(q) = Θ(q) [u(q)− ψ(q)] where Θ(q) = u0(q)/[u0(q) + ψ0(q)].

Hence, z0(q∗) = u0(q∗) − Θ0(q∗)[u(q∗) − ψ(q∗)] > u0(q∗) since Θ0(q∗) < 0. Consider next the

egalitarian solution. The first-order condition for q gives

i

σ
=

u0(q)− ψ0(q)

ψ0(q) + u0(q)
. (18)

From (18), q = q∗ iff i = 0.

The results in Corollary 1 can be easily extended to asymmetric bargaining solutions.
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Corollary 2 For all i ≥ 0 and all θ < 1, equilibria under the generalized Nash solutions are

inefficient. For all θ ∈ (0, 1], equilibria under (asymmetric) proportional solutions are efficient iff
i = 0.

Proof. The proof is similar to one of Corollary 1 and is therefore omitted.

Interestingly, the Friedman rule achieves the first best for any proportional solution. In contrast,

under the generalized Nash solution, output is always too low, except when θ = 1 (in which case

both solutions coincide).

As noticed in LW, the quantity traded under Nash bargaining is inefficiently low even at the

Friedman Rule (i = 0) when θ < 1. LW attribute this inefficiency to a holdup problem on money

balances.13 A holdup problem requires several elements: an irreversible sunk cost of investment,

bargaining over the proceeds of the investment and an inability to contract ex ante with one’s

trading partner over the proceeds. In search models of money the last condition arises naturally

since agents do not know who their trading partners are. The irreversible sunk cost is measured

by i, the nominal interest rate. Finally, when θ < 1, buyers do not receive the full return from

bringing money into a match. Thus, when an agent brings an additional unit of money into a

match, he bears the full sunk cost of acquiring the money but has to share the proceeds of that

investment (the additional surplus in a match) with the seller. Thus, a holdup problem on money

holdings always exists when θ < 1 and i > 0. However, the second necessary condition is violated

at the Friedman rule since i = 0. In this case, there is no sunk cost of holding money — any cost of

acquiring money is completely reversible since agents can sell a unit of money in the next period

for more goods than they gave up to acquire it and this exactly compensates them for discounting.

Consequently, a holdup problem cannot occur when i = 0 even though θ < 1.

What then is the reason for the inefficiency identified by LW at the Friedman rule? The insight

comes from Proposition 1 and (17). At i = 0 there are no costs to holding money so the buyer

chooses his real balances to maximize his own surplus from a trade, u(q)−z(q). It then follows that
the reason for the inefficiently low q comes from the fact that the Nash solution is non-monotonic

and the buyer’s surplus u(q)− z(q) reaches a maximum at some q̃ < q∗ (See Figure 4). Intuitively,

the buyer’s surplus is the product of the buyer’s share Θ(q), which is decreasing in q, and the

surplus of the match u(q)− ψ(q), which is increasing in q. For q close to q∗, the effect of a change

in q on the buyer’s share dominates the effect on the match surplus. In Figure 2, an increase of the

buyer’s real balances shifts the bargaining set upward which in principle could allow the buyer to
13See the explanation in LW on page 574.
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reach a higher surplus. However, the tangency with the Nash product curve requires the buyer’s

surplus to fall when the Pareto-frontier is sufficiently close to the (ub0 +∆
∗, us0 +∆

∗) line.

*qq

)()( qqu ψ−

2
)()( qqu ψ−

)()()( qquq ψ−Θ

Figure 4: Buyer’s surplus under Nash and egalitarian solutions

Under the egalitarian solution, the Friedman rule achieves the first-best allocation. Since the

buyer’s surplus increases with his money holdings, and strictly increases if z < z∗, the buyer will

invest up to z∗ when i = 0. To put it differently, the buyer’s surplus u(q)− z(q) is half of the total

surplus of the match, u(q)−ψ(q). It is therefore maximized when the match surplus is maximized

(See Figure 4). In Figure 3, since the outcome of the bargaining is located on the 45o-line, any

expansion of the bargaining set raises the buyer’s surplus.

5 Optimal monetary policy

In the model studied so far the optimal monetary policy corresponds to the Friedman rule irrespec-

tive of the choice of the bargaining solution. Shi (1997), however, established that a deviation from

the Friedman rule may be desirable when the composition of the market between buyers and sellers

is endogenous. This result is striking since there are few monetary models where the Friedman rule

is not optimal. In this section we show that, when participation is endogenous, the optimality of

the Friedman depends critically on the monotonicity properties of the bargaining solution.
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Following Shi (1997) we now let each agent choose to be either a buyer or a seller in the DM.

Let n ∈ (0, 1) be the fraction of sellers in the DM. Matching is random in the DM and the matching

probabilities of buyers and sellers are σb = n and σs = 1−n, respectively. With no loss of generality,
suppose that the choice of being a buyer or a seller in the period t+1 DM is made at the beginning

of the period t CM. Let W b (W s) denote the value function of an agent in the CM who chooses to

be a buyer (seller) in the next DM with V b (V s) denoting the value function for a buyer (seller) in

the DM. The value functions in the CM satisfy Bellman equations analogous to (2),

W j(z) = max
ẑ

©
T + z − γẑ + βV j(ẑ)

ª
, (19)

where j ∈ {b, s}. As before, the value functions are linear in wealth. Using the result according to
which buyers spend all their money holdings in the DM, the value of being of a buyer in the DM

satisfies

V b(z) = n {u [q(z)]− z}+max
h
W b(z),W s(z)

i
. (20)

Substituting (20) into (19), the value of a buyer with z units of real balances in the CM satisfies

W b(z) = T + z + max
q∈[0,q∗]

β {−iz(q) + n[u(q)− z(q)]}+ βmax
h
W b(0),W s(0)

i
. (21)

From (21) the buyer chooses the quantity to trade in the next DM taking as given the measure n

of sellers, and therefore his matching probability. By a similar reasoning, the value of being a seller

with z units of real balances satisfies

W s(z) = T + z + β(1− n)[z(q)− ψ(q)] + βmax
h
W b(0),W s(0)

i
. (22)

From (22) sellers do not carry money balances into the DM and they take the quantity traded q

(or, equivalently, buyers’ real balances) as given.

Since bothW b(z) andW s(z) are linear in z, the choice of being a buyer or a seller is independent

of z. In equilibrium, agents must be indifferent between being a seller or a buyer. Consequently,

W b(z) =W s(z) and, from (21) and (22), n satisfies

(1− n)[z(q)− ψ(q)] = n [u(q)− z(q)]− iz(q). (23)

The left hand-side of (23) is the seller’s expected surplus in the decentralized market whereas the

right hand-side is the buyer’s expected surplus minus the cost of holding real balances. Solving for

n we get

n =
(1 + i)z(q)− ψ(q)

u(q)− ψ(q)
. (24)
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So, for given q an increase in i raises the fraction of sellers and reduces the measures of buyers.

Intuitively, higher inflation raises the cost of holding real balances and reduces the incentives to be

a DM buyer. From (21), q solves

max
q∈[0,q∗]

{−iz(q) + n[u(q)− z(q)]} . (25)

A steady-state monetary equilibrium is a pair (q, n) such that q is a solution to (25) and n

satisfies (24). Equilibrium is unique at the Friedman rule: q solves u0(q) = z0(q), and given q the

measure of sellers is uniquely determined by (24). The effects of a change in i in the neighborhood

of i = 0 are given by

dq

di

¯̄̄̄
i=0

=
z0(q)

n[u00(q)− z00(q)]
, (26)

dn

di

¯̄̄̄
i=0

= [u(q)− ψ(q)]−1
½µ

1− n

n

¶
z0(q)[u0(q)− ψ0(q)]

u00(q)− z00(q)
+ z(q)

¾
, (27)

where n and q are evaluated at i = 0.14 Inflation has a direct effect on the equilibrium allocation

by raising the cost of holding real balances and therefore by reducing q. The effect of inflation on

n is ambiguous in general. For strongly monotonic bargaining solutions, n increases with inflation

since dn
di =

z(q∗)
u(q∗)−ψ(q∗) > 0.

Welfare is measured by the sum of all trade surpluses in a period, i.e.,W = n(1−n)[u(q)−ψ(q)].
It is maximized for q = q∗ and n = 0.5. (Recall that the number of trades is maximized when the

composition of the market is symmetric.) Totally differentiating the social welfare function and

using (26) and (27), we obtain

dW
di

¯̄̄̄
i=0

=
u0 (q) [u0 (q)− ψ0(q)]

[u00(q)− z00(q)]

(1− n)2

n
+ (1− 2n) z(q). (28)

The intuition provided by Shi (1997) for a positive welfare effect of inflation is based on an envelope

argument. If the Friedman rule achieves q∗ then the first term on the right-hand side of (28) is

zero and a deviation from the Friedman Rule is optimal provided that n < 1/2 or, from (24), if
u(q∗)−z(q∗)
u(q∗)−ψ(q∗) > 1/2.15 For instance, under proportional bargaining, a deviation from the Friedman

rule is optimal whenever θ > 0.5. In this case, the policy maker would be willing to trade off

14The first-order condition of the problem (25) is necessary and sufficient under proportional bargaining –the
problem is strictly concave– and under Nash when some conditions on primitives enumerated in LW are imposed.

15Since q = q∗ at i = 0, the welfare effect of a deviation from the Friedman rule is given by dW
di
= z(q∗)(1− 2n∗).

From (24), n∗ = z(q∗)−ψ(q)
u(q)−ψ(q) . Therefore,

dW
di

> 0 iff z(q∗)−ψ(q∗)
u(q∗)−ψ(q∗) < 1/2 or, equivalently,

u(q∗)−z(q∗)
u(q∗)−ψ(q∗) > 1/2.
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efficiency on the intensive margin to improve the extensive margin by raising inflation so as to

increase the number of sellers and reduce the number of buyers.16 However, under generalized

Nash bargaining the first term on the right-hand side of (28) is not equal to 0 at the Friedman rule

(q < q∗) due to the lack of strong monotonicity. Thus, it is much more difficult to show that a

deviation from the Friedman rule is optimal.

We demonstrate this point more forcefully by comparing the bargaining solutions numerically.

The results are reported in Figure 5. For sake of comparison, we follow Shi (1997) and adopt the

following functional forms: u(q) = q and ψ(q) = qη/η where η > 1 and q∗ = 1. In the left charts a

green (shaded) area indicates the region in the space of parameter values where a deviation from

the Friedman rule is optimal. In these figures we use η and θ which are the two important structural

parameters.17 The charts in the second column use a “topographic map” to indicate the value for q

at the Friedman rule under the three bargaining solutions. The contours join points on the surface

that generate the same value for q in {0.4, 0.5, ..., 1}. The region for q = 1 is white and regions

with lower values for q are darker. So the inefficiency of the intensive margin at the Friedman

rule gets more severe as the region gets darker. Similarly, the charts in the third column plot the

topographic map for n. The regions are darker for values of n close to 0 and lighter for values of n

close to 1. So efficiency on the extensive margin occurs in regions which are neither too dark nor

too light.

16Notice that u(q∗)−z(q∗)
u(q∗)−ψ(q∗) = 1/2 corresponds to the Hosios (1990) condition for efficiency. The argument according

to which a deviation from the Friedman rule could be optimal when the Hosios (1990) condition is violated has
been spelled out by Berentsen, Rocheteau and Shi (2006) for a particular bargaining protocol. Also, despite some
similarities, our results differ from those in Shi (1997) in that an increase in the money growth rate raises the number
of buyers in Shi’s model. Therefore, a deviation from the Friedman rule in Shi’s model is welfare improving when the
number of buyers is too low.

17 In principle, θ is a different parameter under the generalized Nash and the proportional bargaining solutions.
However, in both cases θ represents the buyer’s share of the match surplus when q = q∗.

17



Figure 5: (Sub)Optimality of the Friedman rule

The charts in the first column of Figure 5 reveal that a deviation from the Friedman rule is more

likely to be optimal under the proportional bargaining solution than under the Nash solution: the

set of parameter values under which dW/di > 0 with proportional bargaining encompasses the set

of parameter values under which dW/di > 0 with Nash bargaining. Put differently, for η sufficiently

large, there is no θ ∈ [0, 1] such that dW/di > 0 at i = 0 under Nash or proportional bargaining

solutions. In contrast, for any η > 1, the Friedman rule is suboptimal under the proportional

solution whenever θ > 0.5.

The intuition for this result is clear from the charts in the second column. Under proportional

bargaining, q = q∗ = 1 at the Friedman rule for all parameter values. Therefore, from an envelope-

type argument it is optimal to raise π to reduce the number of buyers whenever n < 1/2, which
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occurs when θ > 1/2 (see charts in the third column). However, under the Nash solution, q < q∗

and the negative welfare effect of a reduction in q is first-order. Furthermore, the first-order welfare

loss from reducing q gets even larger as θ decreases and η increases (the regions in the topographic

map which are darker). From all this, we conclude that a deviation from the Friedman rule is more

likely to be optimal under proportional bargaining than generalized Nash bargaining.

6 Welfare cost of inflation

Lagos and Wright (2005, p. 481) argue that the result according to which the Friedman rule does

not achieve the first-best for θ < 1 has "sizable implications for the cost of inflation in a calibrated

version of the model". We showed in Section 4 that the Friedman rule does achieve the first-best

output under strongly monotonic bargaining solutions. Thus, the welfare cost of inflation should

be significantly lower under the egalitarian solution than it is under the Nash solution. We check

this conjecture by quantifying the welfare cost of inflation under different bargaining solutions.

We follow closely the methodology of LW and Lucas (2000). We set a period to a year, σ = 0.5

and β−1 = 1.03. For calibration purposes, the utility in the CM is now U(c)−h with U(c) = B ln c.

Furthermore, u(q) = q1−η/(1 − η) and ψ(q) = q. We choose the parameters (η,B) to fit money

demand in the model to the data.18 Money demand is defined as L ≡ M/PY . In the model,

nominal CM output is pB, and nominal output in the DM is σM . Hence, PY = pB + σM and

Y = B + σM/p. In equilibrium, M/P = z(q), and so

L =
M/P

Y
=

z(q)

B + σz(q)
,

where q, and hence L, is a function of i. Following Lucas (2000), i is taken to be the commercial

paper rate and let M be M1. The sample period is 1900-2000. We recalibrate the model for each

bargaining solution. While we do not show it here, both bargaining solutions can fit the money

demand data equally well.

Our measure of the cost of inflation is the fraction 1−∆0(π) of total consumption that agents
would be willing to give up to have zero inflation instead of π. Let qπ be the output traded in

bilateral matches in the DM when the inflation rate is π. For a given π, ∆0 solves

U(B)−B + σ [u (qπ)− qπ] = U(B∆0)−B + σ [u (q0∆0)− q0] .

18Alternatively, one could fix η to some arbitrary value and choose (σ,B) to fit money demand. This alternative
calibration method works well for the Nash solution but not for proportional bargaining. Intuitively, the values of σ
that generate a good fit are too low to support a monetary equilibrium.

19



We also consider ∆F (π), which is how much they would give up to have the Friedman rule rather

than π. In Table 1, we report 1−∆0(0.1), 1−∆F (0.1) and 1−∆F (0) as well as the equilibrium

value for q for π = 0.1, π = 0 and at the Friedman rule (qF ) while in Figure 6, we plot 1−∆0 and
1−∆F for a range of interest rates.

Nash Egalitarian Gen. Nash Proportional

η = 0.26
B = 1.77

η = 0.26
B = 2.19

η = 0.36
B = 1.65
θ = 0.32

η = 0.37
B = 2.65
θ = 0.34

q0.1 0.14 0.13 0.09 0.07
q0 0.50 0.64 0.34 0.61
qF 0.81 1 0.60 1

1−∆0(0.1) 3.31% 3.24% 5.19 % 5.25 %
1−∆F (0.1) 3.95% 3.45% 6.92 % 5.56 %
1−∆F (0) 0.86% 0.39% 2.10 % 0.55%

Table 1: Cost of inflation
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Figure 6: Welfare cost of inflation
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As suggested by Table 1 and Figure 6, under the Nash solution output is inefficiently low at the

Friedman rule (qF = 0.81 < 1) and the welfare cost of increasing π from 0 to 10% is about 3.3% of

GDP.

For the egalitarian solution the welfare cost of increasing π from 0 to 10% is also large — 3.2%

of GDP — and is very similar to the estimates found under Nash bargaining. This suggests that, for

any bargaining solution, the welfare costs of inflation are much larger in a search model of money

than arise in standard models. Thus, in contrast to LW’s conjecture above, it appears that the

large welfare costs of inflation are due to bargaining per se and not the fact that the Nash fails to

generate the first-best allocation at the Friedman rule.

So what is it about bargaining that leads to such similar and large welfare costs? Here is where

the LW logic about the holdup problem is correct. Whenever θ < 1 and i > 0 (as it is when inflation

goes from zero to 10%) any bargaining solution generates a holdup problem on money holdings,

therefore it is not surprising that the welfare cost of going from 0% inflation to 10% inflation is

very similar across both models. Understanding the holdup problem now permits us to see why

the welfare costs are high compared to those of Lucas (2000) for example. The expected utility

gain from holding an additional unit of money is equal to the probability of a single-coincidence

match, σ, times the increase in the buyers’ surplus. Under proportional bargaining, this gain is

σθ[u0(q)−ψ0(q)]dqdz and it is equal to the opportunity cost of holding money, i. The expected utility
gain for society is σ[u0(q)− ψ0(q)]dqdz which is equal to i/θ. Thus, the social marginal return of real

balances is 1θ times the private marginal return. Put it differently, the individual money demand

does not accurately capture the social value of holding money since it ignores the seller’s surplus.

For θ = 1/2 the social welfare cost of inflation is approximately twice the private cost for money

holders which is often approximated by the area underneath the money demand curve (e.g., Lucas,

2000).19 So the LW explanation that the welfare costs of inflation are large under bargaining due

to a holdup problem is, in fact, correct. What is incorrect about their argument is the attribution

of these large welfare costs to the fact that q < q∗ at the Friedman rule.

However, differences across bargaining solutions become more apparent if one considers an

increase from the Friedman rule to 10% inflation. Under Nash bargaining 10% inflation relative to

the Friedman rule costs almost 4% of GDP while under the egalitarian solution the cost is 3.5%.

As suggested by the right panel of Figure 6, most of this difference occurs for very low interest

rates. The welfare gain of reducing inflation from 0 to the Friedman rule is worth 0.9% of GDP

19For an elaboration of this idea, see Craig and Rocheteau (2006).
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under Nash bargaining, while under the egalitarian solution it is 0.4% of GDP. So understanding

the formation of terms of trade is crucial for the assessment of the welfare cost of inflation at low

(negative) inflation rates.

The exercise above is done assuming θ = 1/2 for both bargaining solutions. In general, we would

like to calibrate this parameter rather than fixing it arbitrarily. Since 1−θ is an indirect measure of
the seller’s pricing power, we follow LW and calibrate θ to match the aggregate markup (the ratio

of price over marginal cost) in the data. The ratio of price over marginal cost in the DM is M/pq,

while in the CM it is 1. The aggregate markup µ averages the markups in the two sectors using

the shares of output in each sector. As in LW we target µ = 1.1 when the inflation rate is 4%. The

results are reported in the last two columns of Table 1. Again, both bargaining solutions predict

very large but similar welfare costs of 10% inflation relative to price stability — around 5% of GDP.

Consequently, as before, the ability of the Friedman rule to achieve the first-best allocation does

not seem to matter for the welfare cost of moderate inflation. On the other hand, the welfare gain

of reducing inflation from 0 to the Friedman rule is about four times larger under the generalized

Nash solution than under the proportional bargaining solution.

In our earlier working paper, we pursued our analysis by considering a fully calibrated version

of the model that introduces capital and taxation along the lines of Aruoba, Waller and Wright

(2006). Aruoba, Waller and Wright find that capital is fairly inelastic to the inflation rate under

Nash bargaining whereas it is much more responsive under competitive pricing: they attribute this

result to an holdup problem under Nash bargaining. Using the egalitarian solution we show on

the contrary that inflation does have a significant and negative effect on capital formation despite

the presence of an holdup inefficiency inherent to bargaining. Lowering the inflation rate from 10

percent to the Friedman rule raises the aggregate capital stock by about 33 percent — compared to

a mere 3 percent under Nash bargaining. As a result of the sensitivity of capital to inflation, the

welfare cost of inflation is greater under egalitarian bargaining than it is under Nash bargaining.

7 Summary

Bargaining is an integral part of models of decentralized trading. Yet very little work has been done

to understand how various bargaining solutions affect the qualitative and quantitative predictions

of these models. In this paper we examined two standard bargaining solutions to do just that in the

context of a monetary search model. Our analysis provided qualitative and quantitative insights as

to which properties of the bargaining solution matter for the efficiency of equilibrium, the optimal
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policy and the welfare cost of inflation.

We first showed that the ability of the Friedman rule to generate the first-best allocation is

linked to the monotonicity properties of the bargaining solution. Under the Nash solution — a

non-monotonic solution — the quantities traded are inefficiently low even when the nominal interest

rate is driven to zero. In contrast, under the strongly monotonic egalitarian solution the Friedman

rule achieves the first best.

With endogenous participation, the optimal monetary policy crucially depends on the assumed

bargaining solution. The key finding is that the Friedman rule is more likely to be suboptimal

under proportional bargaining solutions than under generalized Nash bargaining. Once again, this

finding is driven by the differences in monotonicity properties of the two bargaining solutions.

We then examined how these efficiency results affect the welfare cost of inflation. Based on

the Lucas (2000) methodology, we showed that the welfare cost of 10 percent inflation (relative to

price stability) is similar across both bargaining solutions due to the holdup problem on money

(away from the Friedman rule). However, the welfare gain from reducing inflation from zero to

the Friedman rule is larger than 2% of GDP under generalized Nash bargaining but about half a

percent of GDP under proportional bargaining. This latter difference is due to the monotonicity

properties of the bargaining solution as opposed to the holdup problem.

As a final thought, one is left wondering if strong monotonicity is an appealing, or even realistic,

attribute of a bargaining solution for monetary models. According to Kalai (1977, p. 1623),

monotonicity is "a bargaining principle since a player who is asked to lose utility because of the

new options may have a very convincing case in threatening to break cooperation."20 Even though

we also view monotonicity as a natural requirement for a bargaining solution, we do not want to

dismiss the Nash solution which has strong strategic foundations. However, it is sensible to check

the robustness of the the results obtained under Nash bargaining in search-theoretic models of

money to alternative bargaining solutions such as the one proposed in this paper.

20The appeal of the monotonicity property is discussed in Section 4 of Kalai (1977) and in the introduction section
of Kalai and Samet (1985).
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