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Abstract

Young firm activity shares have been declining in the U.S. and the decline has
been particularly pronounced in the high-tech sector post-2000. Do labor market
frictions play a role in declining young firm activities and the associated slower pro-
ductivity growth? Using a longitudinal worker-firm matched dataset from the U.S.
Census Bureau, I document that declining young firm activities are accompanied
by: 1) a decline in the growth rate of the demand for skills in the high-tech sector,
and 2) a flattening of the life cycle of skilled labor accumulation of high-tech firms.
By developing an endogenous growth firm dynamics model that is consistent with
the micro-level skilled labor accumulation over the firm life cycle, I show that rising
frictions in skilled labor adjustment can explain the joint evolution of young firm
employment shares and demand for skills. These frictions influence productivity
growth through affecting the stock of human capital firms possess. A calibrated
model shows that a rise in skilled labor adjustment costs lowers productivity growth
by 75 basis points in the high-tech sector. A rise in entry costs, on the other hand,
is not likely the main driver for declining young firm activities, as it implies an
increase in demand for skills. Finally, productivity gain (loss) from reallocation
can be offset by the general equilibrium effects of reallocation on aggregate demand
for skills.
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1 Introduction

1The U.S. economy has been experiencing a secular decline in the pace of business forma-

tion and young firm activity shares in recent decades. In particular, the post-2000 decline

has been very pronounced in the high-tech sector.2 Should we be concerned about these

trends?

Recent literature hasn’t reached a consensus on what caused the decline. On the

one hand, labor supply side explanations argue that declining young firm activity reflects

an efficient response to broader trends such as slower population growth, which leads to

lower firm entry rates (Hopenhayn et al. (2018), Karahan et al. (2019)), or skill-biased

technological progress, which raises the attractiveness of becoming a worker relative to

being an entrepreneur (Salgado (2019)). On the other hand, some studies argue that

frictions may affect young firm activity (Davis and Haltiwanger (2014), Decker et al.

(2018), Akcigit and Ates (2019)). Despite a growing literature studying these empirical

trends and possible drivers behind declining dynamism, we still don’t fully understand

the underlying factors, or the impact of declining dynamism on long-term growth.

This chapter studies the possible connections between business dynamism and pro-

ductivity growth. I focus on demand side factors that affect firms’ decision to enter

and grow. Using a longitudinal worker-firm matched dataset built from administrative

databases from the U.S. Census Bureau, I document a novel fact about the high-tech

sector: the post-2000 decline in young firm activity has been accompanied by a decline in

the growth rate of demand for skills. Furthermore, I document that the aggregate decline

in the growth of demand for skills is driven by a decline in the speed and level of firms’

skilled labor’s accumulation over their life cycle.

Motivated by these empirical facts, I develop an innovation-based firm dynamics

1Any opinions and conclusions expressed herein are those of the author and do not necessarily repre-
sent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential
information is disclosed. The research in this paper is conducted while the author is Special Sworn Status
researcher of the US Census Bureau. This research uses data from the Census Bureau’s Longitudinal
Employer Household Dynamics Program, which was partially supported by National Science Foundation
Grants SES-9978093, SES-0339191 and ITR-0427889; National Institute on Aging Grant AG018854; and
grants from the Alfred P. Sloan Foundation.

2Literature documents the secular trends include Davis et al. (2012), Hyatt and Spletzer (2013),
Decker et al. (2014a), Decker et al. (2014b), Haltiwanger et al. (2014a), Karahan et al. (2019), among
others.
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model that is consistent with micro-level evidence on firms’ skilled labor accumulation.

Using this model, I study the joint evolution of young firm employment shares and demand

for skills in the high-tech sector. My quantitative exercises show that rising adjustment

costs in firms’ skilled labor adjustment drive down both the young firm employment share

and firms’ demand for skills, as observed in the data. Moreover, rising adjustment costs

lead to a decline in productivity growth of 75 basis points. An increase in entry costs, on

the other hand, is not likely to be the dominant driver for the decline in the young firm

employment share, as it predicts a counterfactual increase in the demand for skills.

The contribution to the literature is twofold. First, empirically, this chapter is the

first to examine demand for skills in the high-tech sector and to document the post-2000

slowdown in its growth. It is also the first to study firms’ life cycle of skilled labor

accumulation and how this has changed over time. Second, theoretically, I develop an

innovation-based endogenous growth model that is consistent with firms’ skilled labor

accumulation over their life cycle, and use this model to study the joint evolution of

the young firm employment share and demand for skills and the implication of rising

adjustment costs for productivity growth.

I estimate demand for skills based on the canonical framework developed by Katz

and Murphy (1992) and later analyzed in Katz et al. (1999), Autor et al. (2008), and Ace-

moglu and Autor (2011). The dataset I use is the Longitudinal Employer and Household

Dynamics dataset (LEHD), augmented by the Longitudinal Business Database (LBD)

and the American Community Survey (ACS) from the U.S. Census Bureau. This dataset

covers the universe of U.S. private sector jobs and hence provides us an unbiased view

of the economy with a large enough sample size even if we zoom into a narrowly defined

sector. I construct composition-adjusted relative wages and relative quantities of skilled

to unskilled workers. Assuming the two skill groups are imperfect substitutes, a shift in

the demand curve for skills can be inferred from the relative price and quantity series. I

find that in the high-tech sector, the growth in the demand for skills slowed down signif-

icantly post-2000. The timing coincides with the decline in young firm activity shares in

the high-tech sector.

The unique marriage between worker and firm characteristics in LEHD allows me to

study not only aggregate demand for skills, but also underlying patterns of firms’ skilled
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labor accumulation. I document how the ratio of the stock of skilled labor to that of

unskilled labor changes as firms age in the high-tech sector. I show that firms accumulate

skill rapidly when they are young, but the pace of accumulation slows as firms age. I also

find that the shape of this life cycle pattern has changed over time. Compared to firms

that entered the economy before 2000, firms that were born after 2000 accumulate skilled

labor more slowly and tend to have a lower stock of skilled labor when they mature. We

refer to this below as a flattening of the life cycle pattern.

The empirical findings motivate me to develop a firm dynamics model with skilled

labor accumulation to study the joint evolution of young firm employment shares and

demand for skills. This model builds on the endogenous technological change literature

and in particular the framework developed by Klette and Kortum (2004), as it delivers

a general equilibrium model of technological change while capturing firm entry and exit,

and hence is well suited for the analysis of firm dynamics and productivity growth. My

model is closely related to the model of Acemoglu et al. (2018), which considers differences

between skilled and unskilled labor. I extend those models by introducing adjustment

costs to firms when changing their stock of skilled labor. This feature is key to generating

a life cycle pattern in the model as we observe in the micro data.

In my model, firms hire skilled labor to perform R&D. A successful innovation pro-

vides a technological advantage that enables a firm to take over a competitor’s product

line. Adjusting the current stock of skilled labor is costly due to the presence of ad-

justment costs, and this implies that a firm’s stock of skilled labor increases as it ages.

After a successful innovation, a firm’s markup depends on its stock of skilled labor. This

assumption captures the fact that it takes time for a young firm to establish a customer

base and gain market share. I prove that under general conditions there exists a solution

to the model in which a firm’s stock of skilled labor per product line increases over firm

age and converges to a unique long-run level.

I calibrate the model to be consistent with key features of the high-tech sector for

the 1990-2000 period and study how factors that depress young firms’ employment share

could also affect demand for skills and productivity growth in the high-tech sector. I find

that rising frictions in skilled labor adjustment, which raise the marginal cost of hiring

skilled labor for all firms, lead to a decline in aggregate demand for skills. Such frictions
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hurt young firms disproportionately, as young firms have a higher incentive to adjust

the stock of their skilled labor. Young firm employment shares also decline as a result.

Long-term growth is hampered in this cases, as a lower stock of human capital (skill)

leads to less innovation and hence lower productivity growth. An increase in skilled labor

adjustment costs that is sufficient to generate the decline in the young firm employment

share observed in the data post-2000 leads to a reduction in the long-term productivity

growth of 75 basis points.

Rising costs of entry, on the other hand, reduce the entry rate and young firm

employment share, but do not necessarily lead to lower productivity growth. This is

because incumbents’ probability of survival increases when they face less threat from

entrants. An increase in the expected firm value due to higher survival rates incentivizes

incumbents to hire more skilled labor, and aggregate demand for skills increases. In

equilibrium, incumbents have a higher stock of skilled labor, and that leads to an increase

in productivity growth. The quantitative impact of reallocation from young to old firms

on productivity growth is therefore ambiguous in this case, depending on the relative

strength of the two competing forces in equilibrium: the loss from the relative innovation

capacity of young vs. old firms, and the gain from an increase in the expected future

value of old firms.

In sum, the quantitative study suggests that rising entry costs are unlikely to be

driving the decline in young firms’ employment shares, as they should be associated with

a rising demand for skills. Rising frictions in hiring skilled labor reconcile both patterns,

and are concerning as they imply lower long-term growth.

This chapter is connected to several strands of literature. First, it contributes to the

literature that studies declining business dynamism, its drivers and implications. Many

papers have documented declining entrepreneurship and young firm activities along with

declining labor market fluidity in the United States (Davis et al. (2012), Hyatt and

Spletzer (2013), Decker et al. (2014a), Decker et al. (2014b), Davis and Haltiwanger

(2014), Decker et al. (2018), Molloy et al. (2016), etc.). This chapter complements these

empirical studies by documenting a companion feature - declining growth in demand for

skills - in the high-tech sector.
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Existing studies that develop theoretical frameworks to understand the causes of

declining business dynamism cannot also explain this new fact about declining growth in

demand for skills. The labor supply story of slower population growth (Hopenhayn et al.

(2018) and Karahan et al. (2019)) cannot explain why the share of skilled labor in firms

has declined relative to unskilled labor.3 The skill-based technological progress argument

from Salgado (2019) is also unable to reconcile this empirical fact. Salgado (2019) focuses

on the entire economy, but if his mechanism - entrepreneurship declines in response to a

rising skill premium - holds broadly, we should expect to observe an increase (or at least

a slower decline) in the share of young firms in the high-tech sector post-2000, as data

suggest that the growth rate of the skill premium fell during that period.

This chapter instead highlights the role of frictions. Davis and Haltiwanger (2014)

argue that rising regulations such as occupational licensing or employment protection

decrease labor market fluidity and may hurt startups and young firms more. Decker et al.

(2018) document weaker marginal responsiveness of businesses to productivity shocks and

rising within-industry dispersion of TFP and output per worker in the post-2000 period,

consistent with an increase in adjustment frictions. Akcigit and Ates (2019) highlight the

decline in knowledge diffusion from frontier firms to laggard firms as the dominant driver

underlying declining business dynamism. My work complements this line of literature

by highlighting that frictions in adjusting skilled labor could lead to the decline in both

young firm activities and demand for skills as observed in the data.

Second, this chapter connects to the literature that studies firm dynamics and pro-

ductivity. The seminal work of Hopenhayn and Rogerson (1993) shows that an increase

in frictions on labor adjustment reduces productivity as it reduces allocative efficiency of

factor inputs. Restuccia and Rogerson (2008) and Hsieh and Klenow (2009) also study

the impact of allocative efficiency on aggregate productivity. The influential work by

Hsieh and Klenow (2009) quantifies the role of allocative efficiency for aggregate pro-

ductivity using firm-level data. They show that distortions that drive wedges between

the marginal products of labor and capital across firms will lower aggregate TFP. While

they emphasize the role of allocation of factor inputs, I focus on the role of the stock of

3The argument from Hopenhayn et al. (2018) that the non-production to production worker ratio
declined as a result of the aging firm distribution could potentially shed light on the decline in the share
of skilled labor, if we assume that non-production workers are mostly skilled labor.
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factor inputs. Moreover, they focus on the level of productivity, while I instead study

the growth of productivity through an endogenous growth model.

Third, this chapter connects to the endogenous growth literature. The inspiration to

look at the impact of the stock of human capital on growth comes from the seminal work

of Romer (1990), in which the stock of human capital determines the rate of growth.

Romer (1990) builds on a Solow-type model with technological change where human

capital affects growth through the nonrivalry property of ideas. I instead model human

capital as a direct input to R&D in a firm dynamics model. This model is closely related to

the endogenous growth firm dynamics literature (Grossman and Helpman (1991), Aghion

and Howitt (1992), Klette and Kortum (2004)) and in particular builds upon Acemoglu

et al. (2018). The difference between my model and this line of literature is twofold. First,

my model focuses on the age dimension of firms, and in particular is the first to match

micro-level life cycle patterns of firms’ human capital accumulation. Second, Acemoglu

et al. (2018) explore the positive impact on growth from the reallocation of skill from old

to young firms, which are assumed to be more innovative. My model, on the other hand,

suggests that such a gain from reallocation is not always guaranteed, since in equilibrium

reallocation of skilled labor from old to young firms increases the destruction rate, which

lowers the expected value of firms. With lower expected future value, firms hire less

skilled labor, which leads to lower growth. In other words, I consider how structural

changes affect the stock of human capital, how this affects growth, and how this channel

offsets the composition effects from reallocation.

Finally, this chapter connects to the literature that studies the evolution of aggregate

demand for skills. Autor and Price (2013), Beaudry et al. (2016) and Valletta (2018)

document a reversal in the demand for skill and cognitive tasks in the post-2000 period

for the U.S. economy. While these studies look at the overall U.S. economy and the

labor market impacts of the decline in demand for skills, I focus on the high-tech sector

and study the impact of declining demand for skills on the slowdown in productivity

growth. I also study a potential cause of this decline in skill demand: a rise in skilled

labor adjustment costs.

The rest of the chapter is organized as follows. Section 2 documents the aggregate

demand for skills in the high-tech sector and the underlying firms’ life cycle of skilled
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labor accumulation. Section 3 presents the model. Section 4 presents the quantitative

results and the last section concludes.

2 Empirical Facts

In this section, I document changes over time in the demand for skills and life cycle

patterns of skilled labor accumulation for high-tech firms in the United States.

2.1 Data

The main dataset used for the analysis is the Longitudinal Employer-Household Dynamic

(LEHD) dataset from the U.S. Census Bureau. LEHD is a matched employer-employee

dataset that covers 95% of U.S. private sector jobs.4 I use the 2014 snapshot of the

data, which covers information from 1990 to 2014. LEHD tracks individual earnings at a

quarterly frequency and provides information on worker demographics (e.g. age, gender,

education). The unique combination of worker and firm characteristics in LEHD allows

me to analyze firm-level behavior regarding their skilled labor accumulation and demand

for skills.

I augment LEHD by the Longitudinal Business Database (LBD). LBD is a census of

business establishments and firms in the U.S. with paid employees comprised of survey and

administrative records. The LBD tracks business activity information on an annual basis.

Data include industry, location, employment, annual payroll, birth, death and ownership

changes (if any) at the establishment level.5 In my analysis, an accurate measure of

firm age is important. The fact that LBD provides information on establishments whose

identifiers are longitudinally stable as opposed to firm identifiers which can change over

time due to ownership, single/multi-unit status or other changes, allows me to have a

more robust measure of firm age than the direct usage of firm identifiers from the LEHD,

and this is crucial for my analysis. The highest level of business unit ID in the LEHD is

the federal EIN. To merge LBD to LEHD, I integrate the federal EIN from the Business

4Detailed discussion of LEHD data can be found in Abowd et al. (2009)
5Jarmin and Miranda (2002) provides a detailed description of the data.
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Register with the LBD and use the crosswalk developed by Haltiwanger et al. (2014c).

Finally, I augment the merged LEHD-LBD data by the American Community Survey

(ACS). The education variable in LEHD is heavily imputed, with about 92% of individuals

having imputed education (Vilhuber et al. (2018)). To get a sample with a better measure

of education, I integrate the demographic information from ACS to the LEHD. After the

merge, I keep only the sample with non-imputed education variable which is around 25%

of the full sample. As the non-imputed sample is from the Decennial Census and ACS

which are random samples of the households in the United States, the 25% non-imputed

sample I take is representative of the underlying overall sample.

The focus of this paper is on the high-tech sector. I use the methodology developed

by Heckler (2005) and define the high-tech sector as a group of industries with very high

shares of workers in the STEM occupations of science, technology, engineering, and math.

This sector includes 14 four-digit NAICS industries and covers ICT and biotechnology

industries.6. A list of high-tech industries is provided in Appendix A.

The final dataset consists of over 600000 firms in the high-tech sector from 1990 to

2014.

2.2 Demand for Skills in the High-Tech Sector

I measure demand for skills following the canonical model methodology developed by Katz

and Murphy (1992) and further analyzed by Katz et al. (1999), Autor et al. (2008) and

Acemoglu and Autor (2011). The canonical model provides a parsimonious framework for

thinking about the skill premium. The key assumption underlying the canonical model is

that skilled and unskilled labor are separate inputs for production and they are imperfect

substitutes. Any force mimicking skilled-biased technological progress can lead to a shift

in the demand curve for skills, and the shift can be derived based on how the price and

quantity of skilled labor change relative to unskilled labor. In such models, skilled workers

are defined as those with college and above education and unskilled workers as those with

high school equivalent education. I follow the same definition as the literature.

6Similar definitions have been adopted in Haltiwanger et al. (2014b), Decker et al. (2018)
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To calculate demand for skills from the canonical framework, the key is to compute

the underlying composition-adjusted relative wages and relative quantity series between

skilled and unskilled workers. The demand for skills can be computed as a linear combi-

nation of the relative wage and quantity series given the elasticity of substitution between

high and low-skilled labor.7 In LEHD, I define wage for a particular worker in year t as

the average full quarter earnings for that worker in year t and labor supply as the total

number of quarters the worker worked in that year. I classify workers into 64 demographic

cells by gender (x2), education (x4) and experience (x8), and compute the average wage

and total labor supply for each cell in each year. The average wage for each cell is a

weighted average of quarterly wages where the weights are annual quarters worked. I use

fixed weights for each cell to compute aggregate wages, where the fixed weight for each

cell is its average share of labor supply over all years (1990 to 2014). Using fixed weights

to aggregate wage across groups has the benefit of keeping the composition of the labor

force fixed so that the results are not driven by changes in composition.

I aggregate the sample into 4 cells by education level in every year (the 4 education

categories are college and above, some college, high school and below high school). The

relative wage is the wage ratio of college and above workers to high school workers. The

relative supply is the labor supply ratio of college equivalent to high school equivalent

workers in efficiency units (where efficiency units of labor supply is defined as the total

hours multiplied by the average wage for that cell over the entire sample). The college

equivalent labor supply is defined as the sum of labor supply from college and above

educated workers plus half of the supply from some college educated workers. The high

school equivalent supply is the sum of labor supply from high school educated workers,

supply from below high school workers and half of the supply from some college educated

workers.

Figure 1 plots the evolution of demand for skills in the high-tech sector between

1990 and 2014. The demand for skills was on a steep upward trend from 1990 until 2000,

after which the growth in skill demand slowed down significantly. This finding on the

7In particular, I follow Autor et al. (2008) and calculate demand for skills base on ln(wHt /w
L
t ) =

(1/σ)[Dt − ln(NH
t /N

L
t )]. wH and wL are wages for high and low skilled labor respectively and NH and

NL are corresponding quantities (supply). Dt indexes relative demand shifts favoring high skilled labor.
σ represents the elasticity of substitution.
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Figure 1: Demand for skills by firm age groups in the high-tech sector

Notes: The blue solid line shows the demand for skills for the high-tech sector as a whole. The
red dashed line shows the demand for skills for young firms (less than 5 years old) and the
yellow dash-dot line shows the same measure for old firms. The levels at 1990 are normalized
to 1 and the elasticity of substitution between high and low skilled labor is 1.62.

high-tech sector resonates with the work of Beaudry et al. (2016) and Valletta (2018),

who find a flattening of the wage premium and a reversal of the demand for skills and

cognitive tasks for the U.S. economy as a whole. Figure 1 also breaks down the over all

sector demand into the demands of young and old firms respectively. While the series

for old firms tracks the sectoral trend closely, the demand for skills growth from young

firms dropped significantly. Note that the choice of elasticity of substitution is innocuous

here. The figure shows the measures assuming an elasticity of 1.62, following Autor et al.

(2008), but the significant flattening pattern is robust to elasticities of substitution in the

commonly used range of 1 to 3.

The significant slow down of the growth of demand for skills shown in Figure 1

is striking in that it suggests some fundamental change regarding skill demand may

have occurred in the high-tech sector post-2000. Given the highly innovative nature of

this sector and the importance of human capital to innovation and growth, changes in

demand for skills may reflect changes in the underlying innovation process that influence

productivity growth.
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(A) Young Firms (B) Old Firms

Figure 2: Relative quantity and relative price

Notes: Panel (A) shows the evolution of the relative quantity (solid line, LHS) and relative
price (dash line, RHS) of skilled to unskilled labor in young firms (less than 5 year old). Panel
(B) shows the evolution of the relative quantity (solid line, LHS) and relative price (dash line,
RHS) of skilled to unskilled labor in old firms. The levels in 1990 are normalized to 1.

I further examine the relative price and relative quantity components underlying the

estimated demand for skills. Panel (A) of Figure 2 shows that the skill intensity in young

firms has been declining since 2000. The declining quantity was accompanied by a decline

in the relative price of skill in young firms, indicating a drop in skill demand from young

firms. Panel (B) of Figure 2 shows the same series for old firms. I can see that the skill

premium flattened post-2000, reflecting anemic demand for skills.

The definition of skill deserves some discussion. The fundamental measure of the skill

of an individual is the amount of human capital that individual processes. Education has

long been used as a proxy for human capital, although some studies challenged this idea

by noting the differences between education and occupation (job task).8 That line of

research argues that human capital is only relevant to the extent it is required by the

task a worker is performing. This line of thinking is particularly helpful in analyzing

labor market dynamics such as the interaction between technology, offshoring and the

structure of wages. Arguable, however, the difference is less of a concern when we focus

on a narrowly defined sector where the relationship between education and tasks is more

stable. Moreover, the time span I am focusing on is much shorter compared to the

literature emphasizing the importance of tasks. Nonetheless, I provide an occupation

(task) based demand for skills measure in Appendix B using publicly available data, and

8For exmaple, Autor et al. (2010), David and Dorn (2013), among others.
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the results are consistent with the what I find in the LEHD using education to proxy for

skills.

The sector-level patterns inspire us to dive deeper into individual firms’ skill accu-

mulation and look at how that has changed over time. The next section discusses the

details.

2.3 Life Cycle of Skill Accumulation among High-Tech Firms

The unique combination of firm and worker information in LEHD allows me to track how

firms accumulate skill over time. Before looking into skill accumulation over the firm’s

life cycle, it is useful to think again about the measurement of skill.

The literature on skill demand following Katz and Murphy (1992) emphasizes that in

order to tract aggregate relative quantities and prices, one must adjust for the composition

of the pool of workers so that the measured quantity of skill is comparable over time.

The same intuition holds when we want to track the quantity of skill a firm possesses

over time. To make such a composition adjustment, I convert the number of workers to

the equivalent “efficiency units” by multiplying the quantity of workers by a conversion

coefficient that is specific to the demographic group the worker belongs to. Demographic

groups are defined based on gender, age, education and experience. The conversion factor

is defined in the same way as in Autor et al. (2008), as the average relative wage in that

group over the entire period from 1990 to 2014.

The life cycle pattern of skill accumulation is calculated as a firm’s skill intensity

(efficiency units of high-skilled labor divided by efficiency units of low-skilled labor) of

that firm at age a relative to age 0.

Figure 3 shows the life cycle pattern of skill intensity of high-tech firms. It is no-

ticeable that high-tech firms accumulate skills rapidly when they are young (less than 5

years old) and that the speed of accumulation slows down. Firms have a relatively stable

skill intensity when they mature.

I further examine how this life cycle pattern changes over time. To do so, I first split

12



Figure 3: The life cycle of skill accumulation for high-tech firms

Notes: This is the average life cycle of high-tech firms in the sample. We plot the ratio of high
skilled labor in efficiency units to low skilled labor in efficiency units relative to age 0. Firms
do not need to present for 15 years in order to be included.

the sample firms into cohorts defined by year of entry, and plot the skilled and unskilled

labor relative to age 0 for those cohorts. Figure 4 shows the results. Panel (A) of figure 4

shows the high-skilled labor relative to age 0 as the cohorts age. The difference between

cohorts entering into the economy before and after 2000 is significant. Cohorts entering

before 2000 almost double their level of skilled labor by age 5, but cohorts entering

after 2000 increase their skilled labor by less than 50 percent. On the other hand, the

differences between the life cycle patterns of unskilled labor are less significant for cohorts

entering before and after 2000, as shown in Panel (B) of figure 4.

Finally, I run a fixed effect regression to estimate the life cycle pattern of skill,

controlling for firm and time fixed effects. Specifically, I run the following regression:

∆ lnES,U
i,a,t = αi + βt + γa + εa,i,t (1)

for the period before and after 2000 respectively. ES,U
i,a,t are the efficiency units of skilled

or unskilled labor for firm i with age a at time t. ∆ is the change relative to age 0.
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(A) Skilled Labor (B) Unskilled Labor

Figure 4: Life cycle of skill for different cohorts

Notes: Panel A shows skilled labor relative to age 0 for cohorts enter the economy at different
times. Blue indicates cohorts entering before 2000 and red indicates cohorts entering after 2000.
Panel B shows unskilled labor relative to age 0 for cohorts entering the economy at different
times. Blue indicates cohorts entering before 2000 and red indicates cohorts entering after 2000.

(A) Skilled Labor (B) Unskilled Labor

Figure 5: Fixed effects estimates

Notes: Panel (A) shows the fixed effects estimates of the life cycle pattern of skilled labor
accumulation for periods before and after 2000 respectively. Panel (B) shows the fixed effects
estimates of the life cycle pattern of unskilled labor accumulation for periods before and after
2000 respectively. Error bars indicate 90% confidence intervals.
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Figure 5 plots the estimates of γa in equation 1, along with 90% confidence intervals.

Panel (A) suggests that firms accumulate their skilled labor much more rapidly before

2000 than in the later period. The confidence intervals of the two estimates do not

overlap, suggesting that differences between life cycle patterns before and after 2000 are

statistically significant. Panel (B) plots the life cycle patterns for unskilled labor. There

is also a significant flattening of the life cycle patterns for unskilled labor, but the gap

is much smaller than that of unskilled labor. Taking Panel (A) and (B) together, we

can see that the skilled labor accumulation in high-tech firms slowed down considerably

post-2000.

3 The Model

In this section, I introduce the theoretical framework and characterize the stationary

balanced growth equilibrium.

3.1 Final Good Production

The economy has a representative firm that combines intermediate inputs to produce a

final good, according to the following production function:

lnYt =

∫
j∈Ωt

ln yjtdj, (2)

where yjt is the input of intermediate good j at time t, and Ωt ∈ [0, 1] is the set of active

product lines at time t. Mt is the measure of Ωt and can be smaller than 1. The reason

why there can be inactive product lines will be made clear later. The final good is used

for consumption.

For each intermediate good j, the final good producer can choose from Nj versions

of that good, where the total amount of input j satisfies

yjt =

Nj∑
k=1

xkjt, (3)
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where xkjt is the amount of version k of intermediate good j at time t. Following the

standard assumption in the literature (Grossman and Helpman (1991)), I assume that

different versions are perfectly substitutable, which implies that the final good producer

will use the version with the lowest price.

The optimization problem of the final good producer gives

pjtyjt =
1

Mt

PtYt, (4)

which further implies that

lnPt = lnMt +
1

Mt

∫
j∈Ωt

ln pjtdj, (5)

We choose the final good as the numeraire, i.e. Pt = 1.

3.2 Intermediate Good Production

Intermediate good (product) j is produced by the monopolist who has the leading-ledge

technology in that product line. A firm can own multiple product lines and produce

multiple intermediate goods simultaneously. Firms in the intermediate goods sector hire

both skilled and unskilled labor. I assume that after paying a fixed cost of lf in skilled

labor, a firm has access to a linear production technology of the following form:

yjt = Ajtl
u
jt, (6)

where lujt is the number of unskilled workers employed for producing this good, and Ajt

is the leading-edge technology of firm f on this product line j. The marginal cost of

production is therefore wut /Ajt.

I assume that the firm producing version k of intermediate good j has productivity

Akjt and engages in Bertrand monopolistic competition as often assumed in the endogenous

technical change literature, where the firm with the lowest marginal cost wins the whole

market and sets its price equal to the marginal cost of its closest follower.9 Assume the

9Grossman and Helpman (1991),Lentz and Mortensen (2008),Ates and Saffie (2016), among others.
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productivity of the most productive firm of good j is Ajt = maxk A
k
jt at time t, with that

of the closest follower being Âjt = maxl,Akjt 6=Ajt A
k
jt. Due to the Bertrand competition, the

equilibrium price of good j is

pjt =
1

Âjt
wut . (7)

3.3 Firm Heterogeneity and the Innovation Process

Firms in the intermediate goods sector engage in both product and process innovation.

Product innovations enable firms to acquire new products, and process innovations can

further affect the technology advantage of a firm compared to its closest competitors.

Firms improve product qualities through process innovations. Denote the quality

improvement Ajt/Âjt by qjt, with qjt > 1. I assume that qjt is determined by the amount

of skilled labor used in the product line:

qjt = q(lsjt) =
1

1− η0 × (lsjt)
η1
, (8)

where η0, η1 ∈ [0, 1]. ls is net of the fixed cost lf . Intuitively, when the firm doesn’t have

any skilled labor, i.e. lsjt = 0, it cannot improve upon the current technology. The size of

improvement is an increasing function of skilled labor.

The introduction of η1 deserves some discussion. I assume this specific form so that

the uniqueness of the equilibrium can be ensured through certain regularity conditions.

I model product innovations following Klette and Kortum (2004) where the number

of product lines of a firm of age a, na,t, changes through a creative-destruction process.

The likelihood of success is heterogeneous across firms, depending on the amount of skilled

workers per product line of a firm, and the number of product lines owned by the firm.

The latter can be considered as a proxy of the knowledge capital of that firm.

Product innovations are undirected. For a firm that owns na,t product lines, it

receives na,t iid innovation shocks. Each shock follows a Bernoulli distribution with the

success probability λ(lsa,t), in which λ(·) is an increasing and concave function, and lsa,t

denotes the skilled labor per product line. I assume a parsimonious form λ(lsa,t) = λ0(lsa,t)
θ
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with θ < 1.

Denote the equilibrium destruction rate in the economy as µt. Conditional on the

survival of a firm (with respect to exogenous destruction which will be introduced shortly),

a product line with skilled labor lsa,t, in the next period, there are following three cases:

The number of product lines =


2 with probability λ(lsa,t)(1− µt)

1 with probability (1− λ(lsa,t))(1− µt) + λ(lsa,t)µt

0 with probability (1− λ(lsa,t))µt

.

The expected number of product lines is therefore

E[na+1,t+1] = 1 + λ(lsa,t)− µt. (9)

As lsa,t may change over time for a given firm, I assume it affects the technology

advantage of a firm relative to its closest competitors also through process innovation. I

assume that the technology advantage is always q(lsa,t). This implies that the technology

advantage may decline when lsa,t is lower, which may be justified as a loss of knowledge

due to an imperfect handover process.

Firms need to pay adjustment costs when adjusting their skilled labor. I assume

that the amount of skilled labor is the same across product lines owned by a firm and

the nominal adjustment cost a firm faces is defined as

φt(na,t, l
s
a−1,t−1, l

s
a,t, w

s
t ) ,

ϕ

2
wstna,tl

s
a−1,t−1

[ lsa,t − (1− δ)lsa−1,t−1

lsa−1,t−1

]2

, (10)

where δ is an exogenously given separation rate of skilled labor, and ϕ determines the

difficulty of adjusting skilled labor. I can alternatively assume the adjustment cost is on

the total skilled labor per product line, but as I will show later, defining adjustment costs

based on the amount of skilled worker per product line will help simplify the optimization

problems of firms.

18



Figure 6: Timeline

3.4 Optimal Decisions of Intermediate Goods Producers

The timeline of the model is illustrated by figure 6. I solve the optimization problem

of intermediate goods producers in two steps. In the first step, I express the amount

of unskilled labor as a function of the amount of skilled labor per product line. In the

second step, I solve the optimal choice of the amount of skilled labor per product line.

Consider a product line j owned by a firm of age a. Given the amount of skilled

labor per product line lsa,t, the firm chooses unskilled labor of the product line lujt by

maximizing operating profits:

Ba,j,t = max
{lujt}

(
pjtyjt − wut lujt

)
(11)

s.t. yjt = Ajtl
u
jt (12)

yjt =
Yt

Mtpjt
(13)

pjt =
wut
Ãjt

. (14)

The firm’s optimal choice of unskilled labor is

lujt =
Yt

Mtqjtwut
, (15)

and this implies the operating profit Ba,j,t is given by

Ba,j,t =
Yt
Mt

(1− 1

qjt
) =

Yt
Mt

η0(lsa,t)
η1 . (16)

Therefore, all products owned by the firm have the same operating profit Ytη0(lsa,t)
η1 ,
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which is only a function of lsa,t, denoted as Bt(l
s
a,t).

3.5 Entry and Exit

I assume firms’ entry decisions following Acemoglu et al. (2017). A new firm hires ls0 skill

labor and needs to pay a fixed cost to enter into the economy. After paying the fixed cost,

the entrant will have access to the innovation technology λE(·). A successful innovation

enables an entrant to own one product line at the beginning of the next period.

I assume that the fixed cost is equal to ξ units of skilled labor and ls0 − ξ units of

skilled labor are involved in the innovation process. The free entry condition gives

max
ls0

{
λE(ls0 − ξ)E

V (ls0)

1 + r
− wsls0

}
= 0, (17)

where λE(l) = λE0 l
θ.

The number of entrants will adjust so that the destruction rate µ will ensure the free

entry condition holds.

Firm faces an exogenous destruction rate of ν. Firms exit the economy when their

number of product lines decreases to zero or was hit by the exogenous destruction shock.

3.6 Value Functions

Now I turn to the second step. Adjustment costs of the skilled labor imply that the

amount of skilled labor per product line is a state variable. Firms choose the optimal

level of skilled labor by solving the following Bellman equation:

Vt(na,t, l
s
a−1,t−1) = max

{lsa,t>lf}

{
na,tBt(l

s
a,t)− na,twst lsa,t − φt(na,t, lsa−1,t−1, l

s
a,t, w

s
t )

+
1− ν
1 + r

E
[
Vt+1(na+1,t+1, l

s
a,t)
]}
. (18)

The form of adjustment costs further yields that the value function is a linear function

of the number of product lines na,t. Define vt(l
s
a−1,t−1) = Vt(na,t, l

s
a−1,t−1)/na,t.
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LEMMA 1: The Bellman equation (18) can be simplified to

vt(l
s
a−1,t−1) = max

{lsa,t>lf}

{
Bt(l

s
a,t)− wst lsa,t −

ϕ

2
wst l

s
a−1,t−1

[ lsa,t − (1− δ)lsa−1,t−1

lsa−1,t−1

]2

+ (1− ν)
1 + λ(lsa,t)− µt

1 + r
vt+1(lsa,t)

}
. (19)

Proof : It is straightforward to prove the linearity of V in n using guess and verify.

3.7 Household

There is a representative household who maximizes the life time utility

∞∑
t=0

βt ln
[
Ct − Atτ(Lst)

χ
]
, (20)

where Ct is the consumption of the final good at time t. χ > 1 and 1
χ−1

denotes the Frisch

elasticity. As will be defined later, At is the aggregate productivity and At = Yt/L
u
t . Note

that At changes endogenously in response to innovation processes of firms. I choose this

endogenous scaling by following Ates and Saffie (2016), which provides a justification for

this assumption through home production. This assumption is useful for simplifying the

analysis of the balanced growth path later.

The representative household owns Lu units of unskilled labor, which is a constant

over time, and supplies Lst units of skilled labor, which will be supplied elastically based

on the wage of the skilled labor wst .

The budget constraint of the household is:

Ct = wstL
s + wut L

u + Πt,

where Πt is the aggregate profit, and

Πt =

∫
j∈Ωt

πjtdj, (21)
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in which

πjt = Bt(l
s
jt)− wst lsjt −

φt(ni,t, l
s
i,t−1, l

s
i,t, w

s
t )

ni,t
,

and i denotes the firm that owns the product line j in period t, and lsi,t denotes the

average amount of skilled labor owned by firm i in period t.

Aggregate profit as a share of total output is

ζt =
Πt

Yt
=

1

Yt

∫
j∈Ωt

Bt(l
s
jt)− wst lsjt −

φt(ni,t, l
s
i,t−1, l

s
i,t, w

s
t )

ni,t
dj.

The first order condition of the household optimization problem implies that the

following equation holds for the aggregate supply of skilled labor:

wst = Atτχ(Lst)
χ−1. (22)

3.8 Aggregate Growth Dynamics

As the final good is the numeraire,

0 = lnPt = lnMt +
1

Mt

∫
j∈Ωt

ln pjtdj

= lnMt +
1

Mt

∫
j∈Ωt

(lnwut − ln Ãjt)dj,

which implies that

lnwut =
1

Mt

∫
j∈Ωt

ln Ãjtdj − ln(Mt). (23)

As individual product line’s unskilled labor is given by equation (15), I can define

the aggregate level of unskilled labor as

Lut =
Yt

Mtwut

∫
j∈Ωt

1

qjt
dj, (24)
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which yields

lnYt = lnwut + lnMt + lnLut − ln(

∫
j∈Ωt

1

qjt
dj),

=
1

Mt

∫
j∈Ωt

ln(Ãjt)dj + lnLut − ln(

∫
j∈Ωt

1

qjt
dj).

Define the aggregate productivity

At = Yt/L
u
t , (25)

and At satisfies

lnAt =
1

Mt

∫
j∈Ωt

ln Ãjtdj − ln(

∫
j∈Ωt

1

qjt
dj)

=
1

Mt

∫
j∈Ωt

lnAjtdj −
1

Mt

∫
j∈Ωt

ln qjtdj − ln(

∫
j∈Ωt

1

qjt
dj).

3.9 Equilibrium

Since the amount of skilled labor per product line is the only state variable, it is the same

across firms upon entry within the same cohort, and therefore always the same across

firms within the same cohort over time. This implies that lsa,t and lua,t are functions of age

in period t.

Denote the measure of product lines owned by firms of age a at the beginning of

period t as Λa,t, and the measure of entrants in period t as Λ0,t.

A competitive equilibrium is defined as prices {{pjt}j∈Ωt , w
s
t , w

u
t } and choices {Yt,

{yDjt}j∈Ωt , {ySj,t}j∈Ωt , {lsa,t}a=0,1,...}, {lua,t}a=1,...}, Ct, Lst}, profit Πt, destruction rate µt, and

the distribution of products across age cohorts {Λa,t}a=0,1,..., such that

1. {Ct, Lst} solve the decision problem of households (20) taking wst , w
u
t and Πt as

given, in which Πt satisfies equation (21).

2. Yt and {yDjt} solve the representative final goods producer’s problem (41), taking

{pjt}j∈Ωt as given.
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3. {ySjt, lua,t} solve the intermediate goods producer of age a’s problem (15), taking

Yt, pj,t, and lsa,t as given, if the product line j belongs to the cohort aged a in period

t.

4. {lsa,t}a=0,1,... solve the Bellman equation (19), taking wst and µt as given.

5. The free entry condition maxls0,t

{
λE(ls0,t−ξ)

vt(ls0,t)

1+r
−wst ls0,t

}
= 0 is satisfied, in which

vt satisfies the Bellman equation (19).

6. Market clearing conditions hold:

Ct +
∞∑
a=1

Λa,t

φt(na,t, l
s
a,t−1, l

s
a,t, w

s
t )

na,t
= Yt (26)

yDj,t = ySjt (27)

∞∑
a=1

Λa,tl
u
a,t = Lu (28)

∞∑
a=0

Λa,tl
s
a,t = Lst , (29)

where Lst satisfies equation (22).

7. The distribution of products across age cohorts evolves in an internally consistent

way:

Λ1,t+1 = Λ0,tλ
E(ls0,t − ξ) (30)

Λa+1,t+1 = Λa,t ×
(
1 + λ(lsa,t)− µt

)
(1− ν) (31)

8. The equilibrium destruction rate µt satisfies:

µt = λ(ls0,t − ξ)Λ0,t +
∞∑
a=1

λ(lsa,t)Λa,t, (32)

where Mt is the share of product lines alive at the beginning of period t, and this

equation holds because I assume that the research is undirected.

To simplify the analysis, I add an assumption that due to technological spillovers,

the productivity of idle production line is on average the same as that of active product

line
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Assumption 1 1
Mt

∫
j∈Ωt

lnAjtdj = 1
1−Mt

∫
j /∈Ωt

lnAjtdj.

In this paper, I study the balanced growth path or the steady state of the equilibrium.

Denote X̃ = Xt/At for a variable X that is growing at the same rate as At, and

X = Xt for a variable that is a constant at the steady state. In particular, the following

variables are growing at the same rate as At: Ỹ = Yt/At, w̃
s = wst/At, w̃

u = wut /At,

ṽ = vt/At, B̃(lsa) = Bt(lsa,t)/At. Variables that are constants at the steady state include:

µ = µt, l
s
a = lsa,t, L

s = Lst , Λa = Λa,t,Mt = M and PS = PSt, in which a ∈ {0, 1, ...,+∞}.

LEMMA 2: Along the balanced growth path,

M =
µ

1− (1− µ)(1− ν)
. (33)

Proof: See Appendix F.

The following equations hold in the steady state:

Ỹ = Lu

B̃a = Luη0(lsa)
η1

w̃s = τχ(Ls,s)χ−1

w̃u =
1

M

∞∑
a=1

Λa
1

q(lsa)

ζ =
1

Lu

∞∑
a=1

Λa ×

(
B̃a − w̃slsa −

ϕ

2
w̃slsa−1

[
lsa − (1− δ)lsa−1l

s
a−1

]2
)

ṽ(lsa−1) = max
lsa

{
B̃a − w̃slsa −

ϕ

2
w̃slsa−1

[ lsa − (1− δ)lsa−1

lsa−1

]2

+
1− ν
1 + r

(1 + λ(lsa)− µ)ṽ(lsa)
}

max
ls0

{
λE(ls0 − ξ)

ṽ(ls0)

1 + r
− w̃sls0 = 0

}
Λ1 = Λ0λ

E(ls0 − ξ),
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Λa+1 = Λa × (1− ν)
(
1 + λ(lsa)− µ

)
µ = λE(ls0 − ξ)Λ0 + (1− ν)×

∞∑
a=1

λ(lsa)Λa

Ls =
∞∑
a=0

Λal
s
a

Lu =
∞∑
a=1

Λal
u
a .

The steady state growth rate of aggregate productivity is

gA = ln
At
At−1

= Λ1(ln q(ls0)) +
∞∑
a=1

Λa(1− ν)λ(lsa) ln(q(lsa)).

3.10 The Optimal Choices of Skilled Labor

I solve the steady state equilibrium in three steps. In the first step, I solve the optimal

decisions {lsa, ṽ(lsa)} as functions of {w̃s, w̃u, µ}. In the second step, I determine µ based

on the entry condition. Finally, I use market clearing conditions to solve for equilibrium

prices w̃s and w̃u. In this section, I discuss the first step and presents conditions under

which there exists an unique skilled labor life cycle solution to the model.

I conjecture that the number of skilled worker per product will asymptotically ap-

proach a constant level l̄, where l̄ satisfies conditions (34) (35), which are derived by

letting l̄ = lsa = lsa+1 and solving the Bellman equation for firm aged a. (Details please

revert to the derivation of (49) in the appendix).

ϕw̃sδs =
dB̃s(l̄)

dl̄
− w̃s +

1 + λ(l̄)− µ
1 + r

ϕw̃s

2
(1− (1− δ)2) +

λ′(l̄)

1 + r
vs(l̄) (34)

r + µ− λ(l̄)

1 + r
vs(l̄) = B̃s(l̄)− w̃sl̄ − ϕ

2
w̃sl̄δ2, (35)

where B̃s(l̄) = Luη0l̄
η1 , dB̃s(l̄)/dl̄ = η1L

uη0(l̄)η1−1.

26



Plugging (35) into (34), we have:

ϕw̃sδ− dB̃s(l̄)

dl̄
+ w̃s− 1 + λ(l̄)− µ

1 + r

ϕw̃s

2
(2δ− δ2) =

λ′(l̄)

r − λ(l̄) + µ

(
B̃s(l̄)− w̃sl̄− ϕ

2
w̃sl̄δ2

)
.

(36)

Note that the upper bound for l̄, l̄max, is given by

l̄ ≤ l̄max =
(r + µ

λ0

) 1
θ
.

The intuition for l̄max is as follows: the maximum innovation rate of firms should not

exceed r + µ, With the assumption that the maximum innovation rate of firms does not

exceed µ, the higher the innovative capacity of a firm is, the fewer skilled workers there

should be, to avoid violating the condition that the maximum innovation rate should be

smaller than r + µ.

To ensure the existence and uniqueness of l̄, in the economy, I have Proposition 1,

with its proof can be found in appendix (E).

PROPOSITION 1: The existence and uniqueness of l̄. Under the following

conditions, there is a unique solution of l̄

η1 < θ (37)

θ + η1 < 1 (38)[ B0

(1 + ϕ
2
δ2)w̃s − lf

]
×
(r + µ

λ0

) η1−1
θ < 1 (39)

δϕ(2− δ)
2 + ϕδ2

<
(1− η1)(1− θ)(1 + r)

(1 + θ − η1)(r + µ)
(40)

Proof: See appendix E.

In the quantitative analysis later, I will restrict the parameters in the range such

that these conditions hold. I describe the computation algorithm in Appendix G.
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4 Quantitative Analysis

4.1 Calibration

The calibration strategy consists of two parts. First, for standard parameters, I determine

their value outside of the model based on the standard practice in the literature. Second,

for other parameters, I calibrate them such that the balanced growth path of the model

matches several features of the high-tech sector between 1990 and 2000.

I choose the elasticity of successful innovation with respect to R&D as 0.5, following

Acemoglu et al. (2018). Interest rate is set to be 0.02, similar to those used by Acemoglu

et al. (2018) and Akcigit and Kerr (2018). The Frisch elasticity χ is determined to be

1.455, which comes from Mendoza (1991) and is also standard in the literature. Depre-

ciation rate of human capital captures not only a depreciation of knowledge stock of a

firm, but also a separation of skilled workers from firms. I select its value to be 0.1, the

same as a typical choice in the literature for the depreciation rate of capital. The results

are not sensitive to a smaller value of this depreciation rate. Table 1 summarizes the

parameters calibrated outside of the model.

Other parameters are determined inside the model by matching model outcomes

with their data counterparts. For the purpose of our analysis, it is key to match the ones

governing skilled labor accumulation and distribution, including the life cycle of skilled

labor accumulation, the payroll share of skilled to unskilled labor and the distribution

of the skilled labor among different firm age groups. I design the calibration strategy to

make sure our model covers those key aspects.

I determine process innovation capacity parameters η0 and η1 by matching the av-

erage payroll shares of skilled to unskilled labor and young firm employment share in

skilled labor in LEHD from 1990 to 2000. These two data targets are sensitive to process

innovation, because it affects the skill accumulation over firm age through the marginal

return of hiring an additional skill worker. For young employment share, in both the

model outcome and the data counterpart, I use the employment share of skilled workers

across firm age. The results are not sensitive to using all workers rather than skilled
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Table 1: Parameters Determined Outside the Model

Parameter Symbol Value Sources/Data Targets

Parameters from Other Studies

Innovation elasticity θ 0.50 Acemoglu et al. (2018)

Discount rate r 0.02 Acemoglu et al. (2018), Akcigit and Kerr (2018)

Frisch elasticity χ 1.455 Standard

Depreciation rate of human capital δ 0.1 Standard

Table 2: Parameters Determined Inside the Model

Parameter Value

A. Data target: payroll share of skill to unskilled workers and young employment share of skilled labor

Scaling of quality improvement η0 0.31

Payroll sensitivity to skilled labor η1 0.30

B. Data target: life-cycle of skilled labor

Skilled labor adjustment cost ϕ 1

C. Data targets: distribution of skilled labor across firm age, entry, and exit rates

Incumbent innovation intensity λ0 0.01

Entrant innovation intensity λE 0.0074

Fixed cost lf 1.45

Entry cost ξ 0.45

Exogenous destruction rate ν 0.005

workers.

The adjustment cost intensity parameter ϕ is chosen to match the life cycle growth

of skilled labor in LEHD for 1990-2000. Lifecycle growth of skill, which, as explained

earlier, is defined as the efficiency units of skilled labor at age a relative to that at age 0.

I look at the growth from age 0 to age 5 for an average high-tech firm between 1990 and

2000, which is taken from the coefficient of the fixed effects regression in equation (1).

Entrant and incumbent innovation capacity λE and λ0, fixed operation costs lf ,

fixed cost of entry ξ, and exogenous destruction rate ν are jointly chosen by matching

the skilled labor distribution across firm age groups and firm exit rates computed from

LEHD for 1990-2000.

29



Table 3: Data Targets and Model Counterparts

Data Target Data Model

A. Data target: payroll share of skilled to unskilled workers and young employment share

The ratio of non-production to production worker compensation 2.9 2.9

Share of skilled labor in firm age 0-4 9.6% 9.8%

B. Data target: life-cycle of skilled labor

Age 5 to Age 0 ratio of skill intensity 5.5 5.5

C. Data targets: distribution of skilled labor across firm age, entry, and exit rates (LEHD 90-14)

Share of skilled labor in firm age 5-7 5.4% 7.2%

Share of skilled labor in firm age 8-10 5.4% 6.7%

Share of skilled labor in firm age 11-15 8.9% 9.9%

Exit rate (small/young) 9.9% 6.5%

Exit rate (small/old) 8.8% 6.4%

Table 2 summarizes the value of parameters and Table 3 shows the model perfor-

mance.

4.2 Quantitative Results

To highlight the importance of skilled labor accumulation as a channel for frictions to

affect long-term productivity growth, I compare two exogenous changes in the model

parameters to see how they affect aggregate productivity growth. The first is an increase

in the adjustment cost of changing the stock of skilled labor of a firm, and the second is

a decline in the entrant innovation capacity. The former represents frictions which affect

all incumbent firms and the latter is a way to capture frictions facing by entrants only.

I will show how the endogenous variables: young firm employment share, life cycle of

skilled labor accumulation, demand for skills, and productivity growth, respond under

the two different types of shocks.

I discipline the change in adjustment costs and entry innovation capacity so that

young firm employment shares decrease from 9.6% in the pre-2000 period to 6.2% by

2014.10 The life cycle of skilled labor accumulation is un-targeted. To match the decline

10These are the young firm employment shares in terms of the skilled labor. Young firm are those less
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in young firm employment shares, in the first experiment, entrant innovation capacity

declines from 0.0074 to 0.0065, other things equal. In the second experiment, the skilled

labor adjustment cost parameter increases from 1 to 10, while keeping other parameters

unchanged. To proxy entry costs, I consider a decline in the entrant innovation capacity,

as recent studies do suggest that the innovation production function may have changed

over time (Bloom et al. (2017), Fernald and Jones (2014)). The results are broadly

consistent if I study rising fixed costs of entry instead.

I show that, rising frictions in skilled labor adjustment can generate decline in young

firm employment share and demand for skills, consistent with data, while declining entry

costs can not generate a decline in demand for skills. I further show that a rise in

skilled labor adjustment costs which generates a decline in young firm employment share

consistent with data would imply a 75 basis point decrease in the productivity growth in

the high-tech sector.

4.2.1 Skilled Labor Distribution by Firm Age

The employment distribution across firm age is sensitive to both entrant innovation capac-

ity and skilled labor adjustment costs. Figure 7 shows that with a decline in young firm

innovation capacity, employment shares of firms aged between 0-4, 5-7, 8-10 and 10-15

all decline. Similarly, increasing adjustment costs also shifts the skilled labor distribution

towards old firms.

While both entrant innovation capacity and adjustment costs shift the distribution

towards the old firms, they operate through different channels. Decreasing entrant inno-

vation capacity lowers entry rate from 2.9% to 1.9%. This reduction in the entry rate

brings down young firm employment shares. Increasing adjustment costs, on the other

hand, has limited impact on the entry margin. Entry rate decreases by only 30 basis

points to 2.6%. The main channel through which adjustment costs affect young employ-

ment share is the intensive margin. Facing higher adjustment costs, both young and old

firms would hire less skilled labor but the reduction is more significant for young firms,

than 5 years old. 9.6% is the 10-year average between 1990 and 2000, and 6.2% is the young employment
share in 2014.
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Figure 7: Distribution of skilled labor across firm age groups under different scenarios

Notes: Blue bars (left) is the baseline. Red bars(center) represent the share of skilled labor
owned by a particular firm age group under low entrant innovation capacity. Yellow bars (right)
represent the share of skilled labor owned by a particular firm age group under high adjustment
costs. Both lowering entrant innovation capacity and increasing skilled labor adjustment costs
shift the skilled labor distribution towards old firms.

as they have higher incentive to hire skilled labor. The difference between entrant in-

novation capacity and adjustment costs can also be seen from Figure 7, where the gap

between the base case the low entrant innovation capacity case is similar for firms in age

groups 0-4, 5-7, 8-10 and 10-15, but the gap is larger for firms in the younger age groups

in the case of high adjustment cost.

4.2.2 The Lifecycle of Skilled Labor Accumulation

Declining entrant innovation capacity and rising skilled labor adjustment costs have op-

posite impacts on the life cycle of skilled labor accumulation, as is shown in Figure 8.

Declining entrant innovation capacity induces incumbents to hire more skilled labor. The

intuition is that the marginal return of hiring an additional skilled worker increases with

the expected probability of survival which increases with a decline in the entrant innova-

tion capacity. Equilibrium destruction rate reduces to 6.1% from 6.8% when I lower the

entrant innovation capacity.
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Figure 8: Life cycle of skill intensity under different scenarios

Notes: This figure plots the skilled labor relative to age 0 under different scenarios. Solid blue
line is the baseline case. Red dash line is the life cycle under lower entrant innovation capacity
and yellow dash-dot line is the life cycle under higher skilled labor adjustment costs. Entrant
innovation capacity and skilled labor adjustment costs have different impacts on the life cycle
of skilled labor accumulation.

Rising adjustment costs clearly discourage firms from hiring skilled workers. The

marginal cost of hiring an additional unit of skilled labor increases for both young and

old firms. Even though the destruction rate also decreases (from 6.8% to 6.4%), the

marginal benefit is not sufficiently large to offset the costs. Hence in the equilibrium, all

firms hire few skilled labor and the life cycle of skilled labor accumulation flattens, as

shown in Figure 8.

One may wonder if the flattened life cycle under higher adjustment costs is simply

a manifest of higher initial level of skilled labor, as entrants may choose to increase their

initial stock of skilled labor to avoid to pay higher adjustment costs later on. We show

that this effect is minimum. Initial stock of the skilled labor only increases slightly from

2.4 to 2.7, and the stock of skilled labor decreases for incumbents of all ages (for example,

the stock of skilled labor for an age 5 firm decreases from 18.3 to 10.6).
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(A) Relative Price (B) Relative Quantity

(C) Relative Price (D) Relative Quantity

Figure 9: Relative price and quantity under different scenarios

Notes: Panel (A) shows the high to low skilled labor wage ratio when entrant innovation
capacity declines. Panel (B) shows the ratio of aggregate high to low skilled labor when entrant
innovation capacity declines. Panel (C) shows the high to low skilled labor wage ratio when
skilled labor adjustment costs increase. Panel (D) shows the ratio of aggregate high to low
skilled labor when skilled labor adjustment costs increase.

4.2.3 Aggregate Demand for Skills

Aggregate demand for skills respond differently to declining entrant innovation capacity

and rising adjustment costs. A decline in entrant innovation capacity leads to a strong

rise in aggregate demand for skills, which is measured as the compensation ratio between

high and low skilled labor, from 3.0 to 3.6. The increase in demand for skills is the

response to the reduced equilibrium destruction rate which increases the survival rate

and hence the expected value of incumbents. An increase in the skilled labor adjustment

costs, on the other hand, leads to a significant decline in the aggregate demand for skills

which drops to 2.4 from 3.0.

I further breakdown demand for skills into relative price and quantity, as shown in

Figure 9. A decline in entrant innovation capacity increases both the relative price (wage)

and relative quantity of skilled to unskilled labor. An increase in skilled labor adjustment
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(A) Rising Adjustment Costs (B) Declining Entrant Innovation Capacity

Figure 10: Sources of Growth

Notes: Panel (A) shows the growth from young firms (solid line, LHS) and old firms (dash line,
RHS) under rising skilled labor adjustment costs. Panel (B) shows the growth from young firms
(solid line, LHS) and old firms (dash line,RHS) under decreasing entrant innovation capacity.
Young firms are those less than 5 years old.

costs, on the other hand, decreases both relative price and quantity of skilled to unskilled

labor.

4.2.4 Implications for Productivity Growth

I now look at the implications for productivity growth under the two different scenarios.

When skilled labor adjustment costs increase, productivity growth decrease by 75 basis

points. On the other hand, when entrant innovation capacity declines, aggregate produc-

tivity actually increases by 55 basis points. The counterintuitive productivity gain is a

result of the increased demand for skills, which increases the stock for skilled labor for

incumbent firms and hence produces higher innovation success rate and high productivity

growth.

The effects can be better seen from Figure 10 where I decompose the aggregate

productivity growth into growth from young firms (including entrants) and growth from

old firms. Panel A shows the growth components under rising adjustment costs. We can

see that when adjustment costs are higher, both young and old firms’ growth rates decline.

Panel B shows the growth components under decreasing entrant innovation capacities.

When entrant innovation capacity decreases, the growth from entrants declines. But such

decline is offset by the increase in the growth rate of incumbents whose innovation success
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Figure 11: Effects of fixed cost of entry

Notes: We show how young firm employment share, life cycle of skilled labor accumulation,
demand for skills, and productivity growth response to a change in the fixed cost of entry.

rate increase as they now facing a lower threat of being destructed and hire more skilled

labor.

4.2.5 Discussion

I first discuss the effect of fixed costs of entry. The analysis above considers entrant

innovation capacity as a proxy for entry costs. While fixed costs of entry is another

form and entry costs which lead to broadly consistent implications as entrant innovation

capacity. Figure 11 shows the results. Increasing fixed costs of entry lowers entry rate

and decrease the young firm employment share. Meanwhile, lowered threat from entrants

increases the probability of survival of incumbents and their demand for skills. In the

equilibrium, the increase in growth from incumbents is more than offset by lower entrant

growth, similar to the effects of lower entrant innovation capacity. The difference comes

from the implications for life cycle growth. When fixed costs of entry increase, firms need

to hire a higher amount of skilled labor in order to entry which leads to a slower growth

of skilled labor post-entry.

I then discuss the effects when lowering the innovation capacity for entrants and
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Figure 12: Effects of lower innovation capacities for both entrants and incumbents

Notes: We show how young firm employment share, life cycle of skilled labor accumulation,
demand for skills, and productivity growth response to a change in innovation capacity.

incumbents together while keeping the relative strength of entrant and incumbent inno-

vation capacity constant. Figure 12 shows the results. Intuitively, decreasing innova-

tion capacity will lower aggregate growth. In fact, in this case, both the life cycle of

skilled labor and demand for skills remain unchanged and the growth of entrants and

incumbents decline purely as a result of declined innovation capacity. Young firm share

declines slightly in this case. Since when innovation capacity declines, both entrants and

incumbents have lower success rate of product innovation. Incumbents process innova-

tion advantage now become higher as they have higher stock of skilled labor to conduct

process innovation (as reflected in the quality improvement/mark up function equation

8).

Finally, note that in our analysis the life cycle pattern I got under rising adjustment

frictions is still above the post-2000 life cycle from data. If there are factors which further

bring down firms’ demand for skills, we should expect the productivity growth will be

further hampered.
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5 Concluding Remarks

This paper studies the drivers behind declining business dynamism and the implications

for productivity growth. Using a longitudinal worker-firm matched dataset which covers

the universe of U.S. private sector jobs, I document that accompanying the decline of

young firm activities is a decline in the growth of demand for skills in the high-tech

sector post-2000. Moreover, I document that underlying the decline in aggregate demand

for skills is a flattening of the life cycle of skilled labor accumulation among high-tech

firms.

I develop an endogenous growth firm dynamics model to study the joint evolution

of young firm activities and demand for skills. I incorporate adjustment costs to the

standard framework so that the model can be consistent with the micro level patterns of

firms’ life cycle.

I show that rising frictions in skilled labor adjustment could reconcile the empirical

patterns we observed in the data, i.e. a decline in the young firm activity share, a

flattening of the life cycle of firms’ skilled labor accumulation and a decline in aggregate

demand for skills. Moreover, aggregate productivity growth is hampered in this case,

as firms accumulate a lower stock of skilled labor facing higher adjustment costs. By

calibrating the model to the high-tech sector, I find that rising adjustment frictions could

lead to a 75 basis points decrease in productivity growth in the high-tech sector.

The model also suggests that the productivity gain from reallocating skilled labor

from old to young firms is not always guaranteed, as higher equilibrium destruction rate

will discourage incumbents from hiring skilled labor. This channel offsets the gain from

reallocation. Admittedly, in the current model, young firms are equally innovative as old

firms which may leave interesting post-entry dynamics unexplored. Future research may

want to include richer post-entry dynamics to better assess the relative strength of the

two offsetting channels in the equilibrium.

Finally, even though my focus has been on the high-tech sector, the methodology is

by no means restrictive to this sector alone. Aggregate patterns have suggested that the

decline in demand for skills may exist more broadly outside the high-tech sector and it
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would be interesting to explore its connection to the declining business dynamism and

productivity growth in the broader U.S. economy.
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Appendices

A Definition of the High-Tech Sector

We define high-tech based on the shares of workers in the STEM occupations of sci-

ence, technology, engineering, and math, based on the methodology developed by Heck-

ler (2005). High-tech sector in our analysis includes the following 14 four-digit NAICS

industries, similar as Decker et al. (2018).

Table 4: High-Technology Industries

NAICS Industry

Information and Communications Technology (ICT) High-Tech

3341 Computer and peripheral equipment manufacturing

3342 Communications equipment manufacturing

3344 Semiconductor and other electronic component manufacturing

3345 Navigational, measuring, electromedical, and control instruments manufacturing

5112 Software publishers

5161 Internet publishing and broadcasting

5179 Other telecommunications

5181 Internet service providers and Web search portals

5182 Data processing, hosting, and related services

5415 Computer systems design and related services

Miscellaneous High-Tech

3254 Pharmaceutical and medicine manufacturing

3364 Aerospace product and parts manufacturing

5413 Architectural, engineering, and related services

5417 Scientific research-and-development services

B An Occupation-Based Measure of Demand for Skills

In this section, I present a demand for skills measure for the high-tech sector based on

occupation using public available datasets.

The datasets used are 1980, 1990 and 2000 Decennial Census and ACS from 2005

to 2016 from IPUMS USA. We stack three consecutive years’ ACS to obtain sample for

the middle years (2006, 2009, 2012, 2015). The industry information in Census and ACS
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(A) Relative Price (B) Relative Quantity

Figure 13: Relative price and quantity under occupation based skill measure

Notes: This figure plots the relative price and quantity of skill under alternative definitions of
skill. Panel (A) compares the relative price series. Panel (B) compares the relative quantity
series.

are not ideal. We manually construct a crosswalk from Census and ACS industry codes

to NAICS2002 NAICS and keep the high-tech industries defined in Appendix A.

The advantage of Census and ACS is that they keep the occupation information for

each individual. To define high and low skilled workers, I integrate the task score for

each occupation from David and Dorn (2013) and define high-skilled workers as workers

whose occupations have a higher-than-average abstract task score. Our measure is robust

to other classification of high and low skilled workers.

Figure 13 shows the relative price and quantity series for alternative definitions of

skill (eduction and task). The skill premium flattened at 2000 and the flattening can be

seen under both measures of skill.

C Final Good Producer’s Problem

The optimization problem of the final good producer is

max
{yjt,Yt}

(
PtYt −

∫
j∈Ωt

pjtyjtdj
)

(41)

s.t. lnYt =

∫
j∈Ωt

ln yjtdj

Mt

,
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The Lagrangian function of the problem is

L = PtYt −
∫
j∈Ωt

pjtyjtdj − λ(lnYt −
∫
j∈Ωt

ln yjtdj),

Solving this problem yields:

pjtyjt =
PtYt
Mt

, (42)

which further implies that

lnPt = lnMt +
1

Mt

∫
j∈Ωt

ln pjtdj, (43)

We choose the final good as the numeraire, i.e. Pt = 1.

D Analysis of the Bellman Equation

ṽ(lsa−1) = max
{lsa}

{
B̃(lsa)− w̃s(lsa + lf )

−ϕ
2
w̃s(lsa−1 + lf )

[(lsa + lf )− (1− δ)(lsa−1 + lf )

lsa−1 + lf

]2

+ (1− ν)
1 + λ(lsa)− µ

1 + r
ṽ(lsa)

}
. (44)

Redefine r̂ = (r + ν)/(1− ν)

The FOC wrt lsa,t gives:

B̃′(lsa)− w̃s − ϕw̃s
[ lsa + lf
lsa−1 + lf

− (1− δ)
]

+
1 + λ(lsa)− µ

1 + r̂
ṽ′(lsa) +

λ′(lsa)

1 + r̂
ṽ(lsa) = 0 (45)

The envelope condition gives:

ṽ′(lsa) =
ϕws

2

[(lsa+1 + lf )
2

(lsa + lf )2
− (1− δ)2

]
. (46)
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Equation (45) and (46) give that along the balanced growth path,

ϕw̃s
[ lsa + lf
lsa−1 + lf

− (1− δ)
]

= B̃′(l̄sa)− w̃s+

1 + λ(lsa)− µt
1 + r̂

ϕw̃s

2

[(lsa+1 + lf )
2

(lsa + lf )2
− (1− δ)2

]
+
λ′(lsa)

1 + r̂
ṽ(lsa). (47)

Let ā be the age when lsā = l̄, then I can solve (47) backwardly as:

ϕw̃s
[ lsā−j + lf

lsā−j−1 + lf
− (1− δ)

]
= B̃′(l̄sā−j)− w̃s+

1 + λ(lsā−j)− µt
1 + r̂

ϕw̃s

2

[(lsā+1−j + lf )
2

(lsā−j + lf )2
− (1− δ)2

]
+
λ′(lsā−j)

1 + r̂
ṽ(lsā−j). (48)

l̄ and ṽ(l̄) should satisfy:

ϕδw̃s = B̃′(l̄)− w̃s +
1 + λ(l̄)− µ

1 + r̂

ϕw̃s

2
(2δ − δ2) +

λ′(l̄)

1 + r̂
ṽ(l̄), (49)

r̂ + µ− λ(l̄)

1 + r̂
ṽ(l̄) = B̃(l̄)− w̃s(l̄ + lf )(1 +

ϕ

2
δ2). (50)

E Existence and Uniqueness of l̄

This section shows under certain conditions, there exist a unique value of l̄ as the solution

to (49). To begin with, note that B(l̄) = B0l̄
η1 , where B0 = Luη0. Equation (49) can be

written as:

ϕwsδ−B′(l̄)+ws−1 + λ(l̄)− µ
1 + r̂

ϕws

2
(2δ−δ2) =

λ′(l̄)

r − λ(l̄) + µ

(
B(l̄)−wsl̄−ϕ

2
wsl̄δ2

)
. (51)

Redefine l̄ = lL − lf , then I have

ϕwsδ−B′(l̄)+ws−1 + λ(l̄)− µ
1 + r̂

ϕws

2
(2δ−δ2) =

λ′(l̄)

r − λ(l̄) + µ

(
B(l̄)−ws(l̄+lf )−

ϕ

2
ws(l̄+lf )δ

2
)
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=⇒

ws(1 + ϕδ) +
ϕ

2
(δ2 − 2δ)

1 + λ0l̄
θ − µ

1 + r̂
+

λ0θl̄
θ−1

r̂ + µ− λ0l̄θ
w2(l̄ + lf )

+
ϕ

2
wsδ2(l̄ + lf )

λ0θl̄
θ−1

r̂ + µ− λ0l̄θ

=
[
η1 +

λ0θl̄
θ

r̂ + µ− λ0l̄θ

]
×B0l̄

η1−1

=⇒

[ 1 + ϕδ

1 + ϕ
2
δ2

+
ϕ
2
(δ2 − 2δ)

1 + ϕ
2
δ2

1 + λ0l̄
θ − µ

1 + r̂
+
λ0θl̄

θ−1(l̄ + lf )

r̂ + µ− λ0l̄θ

][
η1 +

λ0θl̄
θ

r̂ + µ− λ0l̄θ

]−1

=
B0l̄

η1−1(
1 + ϕ

2
δ2
)
ws

(52)

LHS of equation (52) can be written as

LHS = 1 +
[
1− η1 + C · (r̂ + µ− λ0l̄

θ) +
λ0θl̄

θ−1lf
r̂ + µ− λ0l̄θ

][
η1 +

λ0θl̄
θ

r̂ + µ− λ0l̄θ

]−1

= 1 +
[
1− η1 + C · (r̂ + µ− λ0l̄

θ)− η1
lf
l̄

][
η1 +

λ0θl̄
θ

r̂ + µ− λ0l̄θ

]−1

+
lf
l̄

= 1 +
[
1− η1 + C · (r̂ + µ− λ0l̄

θ)
][
η1 +

λ0θl̄
θ

r̂ + µ− λ0l̄θ

]−1

+
lf
l̄

{
1− η1

[
η1 +

λ0θl̄
θ

r̂ + µ− λ0l̄θ

]−1
}

where

C =
1

1 + r̂

ϕ
2
(2δ − δ2)

1 + ϕ
2
δ2

.

Let

f1(l̄) =
B0l̄

η1−1

(1 + ϕ
2
δ2)ws

− lf
l̄

{
1− η1

[
η1 +

λ0θl̄
θ

r + µ− λ0l̄θ
]−1
}

f2(l̄) =
[
1− η1 + C(r + µ− λ0l̄

θ)
][
η1 +

λ0θl̄
θ

r + µ− λ0l̄θ
]−1

+ 1

f1(l̄)l̄ = f2(l̄)l̄ gives

B0l̄
η1

(1 + ϕ
2
δ2)ws

− lf
{

1 − η1

[
η1 +

λ0θl̄
θ

r + µ− λ0l̄θ
]−1
}

=
(1− η1)l̄ + Cl̄(r + µ− λ0l̄

θ)

η1 + λ0θl̄θ

r+µ−λ0 l̄θ
+ l̄,

(53)
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and
B0l̄

η1

(1 + ϕ
2
δ2)ws

=
(1− η1)l̄ + Cl̄(r + µ− λ0l̄

θ)− lfη1

η1 + λ0θl̄θ

r+µ−λ0 l̄θ
+ l̄ + lf (54)

Define the LHS of equation (54) to be new f1 and RHS to be new f2. We want to find

conditions under which df1/dl̄ < df2/dl̄

The LHS of the inequality can be written as

df1

dl̄
=
η1

l̄
f1 =

η1

l̄
f2

. We now calculate the RHS of the inequality.

df2

dl̄
= 1 +

(1− η1)l̄ + Cl̄(r + µ− λ0l̄
θ)− Cλ0θl̄

θ

η1 + λ0θl̄
r+µ−λ0 l̄θ

− (1− η1)l̄ + Cl̄(r + µ− λ0l̄
θ)− lfη1(

η1 + λ0θl̄
r+µ−λ0 l̄θ

)2 × λ0θ
2(r + µ)l̄θ−1

(r + µ− λ0l̄θ)2

Hence we need to have

η1

l̄
×
[(1− η1)l̄ + Cl̄(r + µ− λ0l̄

θ)− lfη1

η1 + λ0θl̄
r+µ−λ0 l̄θ

+ lf

]
<

(1− η1)l̄ + Cl̄(r + µ− λ0l̄
θ)− Cλ0θl̄

θ

η1 + λ0θl̄
r+µ−λ0 l̄θ

+ 1− η1

− (1− η1)l̄ + Cl̄(r + µ− λ0l̄
θ)− lfη1(

η1 + λ0θl̄
r+µ−λ0 l̄θ

)2 × λ0θ
2(r + µ)l̄θ−1

(r + µ− λ0l̄θ)2

Multiply both sides by η1 + λ0θl̄
r+µ−λ0 l̄θ

and organize the terms, we have

η1(1− η1) + η1C(r + µ− λ0l̄
θ) + η1

lf
l̄

λ0θl̄
θ

r + µ− λ0l̄θ

< (1− η1) + C(r + µ− λ0l̄
θ)− Cλ0θl̄

θ + (1− η1)×
(
η1 +

λ0θl̄
θ

r + µ− λ0l̄θ

)
− (1− η1)l̄ + Cl̄(r + µ− λ0l̄

θ)− lfη1

η1 + λ0θl̄θ

r+µ−λ0 l̄θ

λ0θl̄
θ

r + µ− λ0l̄θ
× r + µ

r + µ− λ0l̄θ
1

l̄
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[The rest of the algebra will be added soon.]

F Proof of LEMMA 2

µ =Λ1 + Λ1λ(ls1)(1− ν) + Λ1λ(ls2)[1 + λ(ls1)− µ](1− ν)2 + ...

Λ1λ(ls3)[1 + λ(ls2)− µ][1 + λ(ls1)− µ](1− ν)3 + ...

Λ1(1− ν)ā−1Πā−2
i=1 [1 + λ(lsi )− µ]λ(lsā−1) + ...

Λ1(1− ν)āΠā−1
i=1 [1 + λ(lsi )− µ]

λ(lsā)

1− (1− ν)(1 + λ(lsā)− µ)
(55)

Define

M = Λ1 + Λ1(1− ν)[1 + λ(ls1)− µ] + Λ1(1− ν)2[1 + λ(ls1)− µ][1 + λ(ls2)− µ]...

+ Λ1(1− ν)ā−1Πā−1
i=1 [1 + λ(lsi )− µ] + Λ1(1− ν)āΠā

i=1[1 + λ(lsi )− µ]
1

1− (1− ν)(1 + λ(lsā)− µ)

Now let the kth term in equation (55) be combined with the (k − 1)th term of

M(1− µ)(1− ν), we have

µ+M(1− µ)(1− ν) = Λ1 + Λ1(1− ν)[1 + λ(ls1)− µ]...

+ Λ1(1− ν)2[1 + λ(ls1)− µ][1 + λ(ls2)− µ]...

+ Λ1(1− ν)ā−1Πā−1
i=1 [1 + λ(lsi )− µ]...

+ Λ1(1− ν)āΠā
i=1[1 + λ(lsi )− µ]

1

1− (1− ν)(1 + λ(lsā)− µ)

= M,

So we can solve

M =
µ

1− (1− µ)(1− ν)
. (56)
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G Algorithm of Solving the Balanced Growth Path

In this section, I describe the computation algorithm.

Step 1: We solve for l̄ using equation (36) and calculate vs(l̄) using equation (35).

Step 2: Define the policy function h(l) as the optimal choice of skilled labor per

product line when the skilled labor per product line in the end of the last period is equal

to l. We solve vs(l) and h(l) using backward induction. Given l̂s, h(l̂s), we can solve

ls, h(ls) and vs(l) such that h(ls) = l̂s, using the following equations derived from the

Bellman equation:

ϕws,s
(l̂s − (1− δ)ls)

ls
=
dBs(l̂s)

dl̂s
− ws,s

+
1 + λ(l̂s)− µ

1 + r

ϕws,s

2

h(l̂s)2 − (1− δ)2(l̂s)2

l̂s
2 +

λ′(l̂s)

1 + r
vs(l̂s) (57)

vs(ls) = Bs(l̂s)− ws,sl̂s − ϕws,s

2
ls
[ l̂s
ls
− 1 + δ

]2
+

1 + λ(l̂s)− µs

1 + r
vs(l̂s) (58)

In our current model, for a given optimal choice of l in a certain period, there may

not be a solution so that in the long run, the choices converge to l̄, and may actually

fluctuate around l̄. We see our model as an approximation for a continuous time model.

We will do backward induction starting from values close to l̄ and get policy functions and

value functions defined on a grid. Next, I interpolate firms’ optimal choices when they do

not fall exactly on the grids that are calculated from the backward induction. Specifically,

we choose a very small εl > 0, and let h(l̄ − εl) = l̄ and vs(l̄ − εl) = vs(l̄)− εldvs/dl̄.

Step 3: I determine µs as a function of ws,s and ξ, using the entry condition: (17):

max
ls,s0

{
λE(ls,s0 − ξ)

vs(ls,s0 )

1 + r
− ws,sls,s0

}
= 0.
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However, when the wage of the skilled worker ws,s is sufficiently high, µs may be

lower than λ(l̄), in which case the steady state with a positive entry does not exist.12

In this case, the steady state will have no entry, µ = λ(l̄), and l̄ satisfies the following

equation:

ϕws,sδ − dBs(l̄)

dl̄
+ ws,s − 1

1 + r

ϕws,s

2
(2δ − δ2) =

λ′(l̄)

r

(
Bs(l̄)− ws,sl̄ − ϕ

2
ws,sl̄δ2

)
. (59)

Step 4: If there is a positive entry, Λs
0 is a function of ws,s and ξ. Otherwise, Λs

0 = 0.

As we have obtained the optimal choices of firms ls,s1 = h(ls,s0 ), ls,s2 = h(ls,s1 ), · · · ,

ls,sā = l̄ − ξ, we can derive the distribution of firms as a function of ws,s and ξ.

Note that
Λs

1 = Λs
0λ

E(ls,s0 − ξ)

Λs
a = Λs

1Πa−1
i=1 (1 + λ(ls,si )− µs), for 2 ≤ a ≤ ā,

Λs
a = Λs

1

(
Πā−1
i=1 (1 + λ(ls,si )− µs)

)(
1 + λ(ls,sā )− µs

)a−ā
, for a > ā.

11The conditions in Proposition 1 require that µs should satisfy the following conditions:

µs < (1− η1)
1 +

ϕδ2s
2

ϕδs
(1 + r)− r

µs <
(1− η1)2

θ

1 +
ϕδ2s
2

ϕδs
(1 + r)− r

µs ≥ λ0
[ 1

Luη0
ws,s(1 +

ϕ

2
(δ)2)

] θ
η1−1 − r

12This can be proved by noting that l̄ and vs are both decreasing functions of µ. If the term inside
the maximization operator is negative, µ needs to decline to make the entry condition holds, and l̄ will
rise, making it possible to violate µ > λ(l̄).
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We then calculate Λs
0 as a function of µs based on the following equation:

µs = M × {Λs
0λ

E(ls,s0 − ξ) +
∞∑
a=1

λ(ls,sa )Λs
a(1− ν)}

= M × Λs
0λ

E(ls,s0 − ξ)×
{

1 + λ(ls1)(1− ν) + ...

ā−1∑
a=2

λ(lsa)(1− ν)aΠa−1
i=1 (1 + λ(lsi )− µ) + ...

(1− ν)āΠā−1
i=1 [1 + λ(lsi )− µ]

λ(lsā)

1− (1− ν)(1 + λ(lsā)− µ)

}
(60)

Step 5: If there is a positive entry, we solve ws,s from the market clearing condition

of the skilled labor (29):

Ls,s =
[ws,s
τχ

]1/(χ−1)
= Λs

0

{
ls,s0 + λE(ls,s0 − ξ)l

s,s
1 +

ā−1∑
a=2

λE(ls,s0 − ξ)
(
Πa−1
i=1 (1 + λ(ls,si )− µs)

)
lsa + λE(ls,s0 − ξ)

Πā−1
i=1 (1 + λ(ls,si )− µs)

µs − λ(l̄)
l̄
}

(61)

If there is no positive entry,

Ls,s =
[ws,s
τχ

]1/(χ−1)
= l̄. (62)

Step 6: If there is positive entry, we determine wu,s, using the market clearing

condition:

wu,s =
∞∑
a=1

Λs
a

q(ls,sa )
.

If there is no positive entry,

wu,s =
1

q(l̄)
.
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Figure 14: Entry Decision
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H Entry Decision

Figure 14 shows how the initial skilled labor is determined in the model: ls0 is chosen to

maximize the entry value. The mass of entry adjust so that the entry value equals zero.

I Firm Size Distribution

Let F (a, n) be the number of firms at age a with n product lines.

• When a = 1,

F (1, 1) = Λ0λ
E(ls0 − ξ). (63)

• When a > 1,

F (a+ 1, n) =
2a−1∑

k=[n+1
2

]

F (a, k)(1− ν)

k−[n+1
2

]∑
l=0

Ck
k−lµ

l(1− µ)k−lCk
n−(k−l)λ

n−(k−l)(1− λ)2k−l−n,

(64)

for n ∈ [1, 2a].

Hence the number of firms with n product lines can be written as:
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F n =
∞∑
a=1

F (a, n). (65)

Firm exit rate:

The share of exiting firms between age k and l can be calculated as:

l∑
a=k

2a−1∑
n=1

F (a, n)(1− ν)µn(1− λ)n/
l∑

a=k

2a−1∑
n=1

F (a, n) + ν. (66)
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