(a) Static problem: Can write as

\[\text{Max } T \frac{w-1}{w} + N \frac{w-1}{w} + \mathbb{I}(EX - T - RN) \]

FOC's: \[\frac{w-1}{w} T^{-\frac{1}{w}} = 1 \]

\[\frac{w-1}{w} N^{-\frac{1}{w}} = \lambda R \]

\[\Rightarrow N = T(R^{-w}) \]

Plug into budget constraint: \[T + R^{1-w} T = EX \]

\[T = \frac{EX}{1 + R^{1-w}} \quad N = \frac{EX \cdot R^{-w}}{1 + R^{1-w}} \]

Plug into definitions of \(p, c \):

\[p \cdot EX \cdot \left[\frac{w - \left(1 + R^{1-w}\right)^{1-w} + R \left(1 + R^{1-w}\right)^{1-w} \frac{w}{w}}{w} \right] = c \]

\[p = \left(1 + R^{1-w}\right)^{1-w} \]
Key 8/09 Macro comp p1, page 2

Note that \(\frac{dp}{dR} = \frac{1}{1-w^*} R^{-w} = R^{-w} > 0 \)

(b) State variables: \(At \) (Endogenous)
\(R_t, Y_t, X_t \) (Exogenous)

Controls: \(T_t, N_t \)

Bellman Equation

\[
V_t(At) = \max_{T_t, N_t} \left[u(T_t, N_t) + \beta E_t V_{t+1}(At+1) \right]
\]

FOC's: \(T_t; \quad C_t \frac{1}{\delta} - T_t \frac{1}{w} = \beta(1+r) E_t V'_{t+1}(At+1) \)

\(N_t; \quad C_t \frac{1}{\delta} - N_t \frac{1}{w} = \beta(1+r) R_t E_t V'_{t+1}(At+1) \)

Envelope: \(V'_t(At) = \beta(1+r) E_t V'_{t+1}(At+1) \)
Combining FOCs for \(T, N; \)
\[
R_t = \left(\frac{T_t}{N_t} \right)^{1/w}
\]
Plugging in (5): \(R_t = \left(\frac{T_t}{X_t} \right)^{1/w} \rightarrow \) increasing in \(T \)
Decreasing in \(X \)

Combining envelope and FOC for \(T_t \rightarrow \) Euler Equation:
\[
C_t^{1 - 1/w} T_t^{-1/w} = \beta (1 + r) E_t \left[C_{t+1}^{1 - 1/w} T_t^{1/w} \right]
\]

Note if \(w = 0 \), we have
\[
T_t^{-1/w} = \beta (1 + r) E_t (T_t^{-1/w})
\]
And dynamics of \(T \) are independent of \(N \) or \(X \).

(C) Complete Markets Problem:
\[
\max \quad \sum_{t=0}^{\infty} \beta^t \pi_t(z_t) u(C_t(z_t))
\]
\(s.t. \ (2), (5'), \) and (6)
Assuming \(w = 0 \), FOC for \(T_t(z_t) \) simplifies to:
\[
\beta^t \pi_t(z_t) T_t^{1/w} \rightarrow \text{Multiplier on } (6)
\]
Note that since world tradeables output is constant and countries are small, we have
\[\frac{Q_0(\tau t)}{\beta_t \pi(\tau t)} \]
will be independent of τt, so that $T^e(\tau t) = \bar{T}$ (constant for each country, although \bar{T} may vary across countries)

So, under complete markets,
\[C_t = \left(\frac{\bar{T} w^{-1} - X_t}{w} + X_t \frac{w^{-1}}{w} \right)^{\frac{w}{w-1}} \]
\[P_t = (1 + R)^\frac{1-w}{w-1} = (1 + (\frac{
bar{T} - X_t}{X_t})^{\frac{1-w}{w-1}})^\frac{1}{1-w} \]

Note: Only shocks to X_t affect C or P, since under complete markets, tradeables consumption T is fully insured against country-specific tradeables endowment shocks.

Since an increase in X_t increases C_t and reduces R_t and P_t, we have perfect negative correlation of (C, P).
Under incomplete markets,

\[C_t = \left(\frac{w-1}{w} + \frac{w-1}{t_t w} \right)^{\frac{w}{w-1}} \rightarrow \text{Increasing in } T_t, X_t \]

\[P_t = \left(1 + \left(\frac{T_t}{X_t} \right)^{-1-w} \right)^{\frac{1}{1-w}} \rightarrow \text{Increasing in } T_t, \text{ Decreasing in } X_t \]

Note: now that positive tradeables endowment shocks will increase \(T_t \), which will increase both \(C_t \) and \(P_t \).

As before, positive non-tradeables endowment shocks will increase \(C_t \) while reducing \(P_t \).

So correlation is no longer perfectly negative.