Question 1

Part a

State variables: a_t, h_t, w_t, y_t
Choice variables: a_{t+1}, h_{t+1}, e_t, c_t

$$V(a_t, h_t) = \max_{c_t, e_t} \{ u(c_t) + \beta E_t V[R(a_t + w_t h_t^\alpha - c_t - e_t), (1 - \delta)h_t + e_t] \}$$

Part b

First Order Conditions

$$u'(c_t) - \beta RE_t \frac{\partial V(\cdot)}{\partial a_{t+1}} = 0 \quad (1)$$

$$-\beta RE_t \frac{\partial V(\cdot)}{\partial a_{t+1}} + \beta E_t \frac{\partial V(\cdot)}{\partial h_{t+1}} = 0 \quad (2)$$

Envelope Conditions

$$\frac{\partial V(\cdot)}{\partial a_t} = \beta RE_t \frac{\partial V(\cdot)}{\partial a_{t+1}} \quad (3)$$

$$\frac{\partial V(\cdot)}{\partial h_t} = \alpha w_t h_t^{\alpha - 1} \beta RE_t \frac{\partial V(\cdot)}{\partial a_{t+1}} + (1 - \delta) \beta E_t \frac{\partial V(\cdot)}{\partial h_{t+1}} \quad (4)$$
Part c

Combining equation (2) and (4)

\[
\frac{\partial V(\cdot)}{\partial h_t} = \alpha w_t h_t^{\alpha-1} \beta R E_t \frac{\partial V(\cdot)}{\partial a_{t+1}} + (1 - \delta) \beta R E_t \frac{\partial V(\cdot)}{\partial a_{t+1}}
\]

\[
\frac{\partial V(\cdot)}{\partial h_t} = [\alpha w_t h_t^{\alpha-1} + (1 - \delta)] \beta R E_t \frac{\partial V(\cdot)}{\partial a_{t+1}} \tag{5}
\]

Replacing equation (1) into equation (5)

\[
\frac{\partial V(\cdot)}{\partial h_t} = [\alpha w_t h_t^{\alpha-1} + (1 - \delta)] u'(c_t)
\]

or

\[
\frac{\partial V(\cdot)}{\partial h_t} = R_{ht} u'(c_t) \tag{6}
\]

where

\[
R_{ht} = \alpha w_t h_t^{\alpha-1} + (1 - \delta) \tag{7}
\]

Note that \(R_{ht}\) is a function of parameters, endogenous state variables and \(w_t\). Therefore, \(R_{ht}\) is stochastic only if \(w_t\) is.

Part d

Combining equation (1) and (3)

\[
\frac{\partial V(\cdot)}{\partial a_t} = u'(c_t) \tag{8}
\]

Forwarding equation (8) one period and plugging it into equation (1) we get one Euler equation

\[
u'(c_t) = \beta R E_t u'(c_{t+1}) \tag{9}\]

Combining equation (1) and (2)

\[
u'(c_t) = \beta E_t \frac{\partial V(\cdot)}{\partial h_{t+1}} \tag{10}\]

Forwarding equation (6) one period and plugging it into equation (10) we get the second Euler equation

\[
u'(c_t) = \beta E_t R_{ht+1} u'(c_{t+1}) \tag{11}\]
Part e

Equation (11) can be rewritten as

\[u'(c_t) = \beta E_t (R_{ht+1} + 1) u'(c_{t+1}) + \beta \text{cov} (R_{ht+1}, u'(c_{t+1})) \] (12)

Subtracting equation (12) from equation (9)

\[0 = \beta R E_t u'(c_{t+1}) - \beta E_t (R_{ht+1} + 1) u'(c_{t+1}) - \beta \text{cov} (R_{ht+1}, u'(c_{t+1})) \]

\[\beta E_t (R_{ht+1} + 1) u'(c_{t+1}) - \beta R E_t u'(c_{t+1}) = -\beta \text{cov} (R_{ht+1}, u'(c_{t+1})) \]

\[E_t (R_{ht+1} + 1) E_t u'(c_{t+1}) - R E_t u'(c_{t+1}) = -\text{cov} (R_{ht+1}, u'(c_{t+1})) \]

\[E_t [R_{ht+1} + 1 - R] = -\frac{\text{cov} (R_{ht+1}, u'(c_{t+1}))}{E_t [u'(c_{t+1})]} \] (13)

We show below that if \(w_t \) is non-stochastic, the equity premium equals zero. Combining equation (9) and (11) we get

\[RE_t u'(c_{t+1}) = E_t R_{ht+1} u'(c_{t+1}) \]

Given that R is fixed, the equation above implies that \(R_{ht+1} \) and \(u'(c_{t+1}) \) must be negatively correlated. Then \(\text{cov} (R_{ht+1}, u'(c_{t+1})) < 0 \) which implies a positive equity premium.

Part e

If \(w_t \) is non-stochastic, equation (9) and (11) imply that \(R_{ht+1} = R \) which implies a zero equity premium. Also note that if \(R_{ht+1} \) is fixed, \(\text{cov} (R_{ht+1}, u'(c_{t+1})) = 0 \). Equation (13) then implies a zero equity premium.

Now, equation (7) replacing into \(R_{ht+1} = R \)

\[R = \alpha w_{t+1} h_{t+1}^{\alpha - 1} + (1 - \delta) \]

\[h_{t+1} = \left(\frac{R - 1 + \delta}{\alpha w_{t+1}} \right)^{\frac{1}{\alpha - 1}} \] (14)

Replacing equation (14) into the equation of movement of human capital we get
\[e_t = (1 - \delta) h_t + \left(\frac{R - 1 + \delta}{\alpha w_{t+1}} \right)^{\frac{1}{\alpha}} \]

(15)

Exercise 2

Note that current period profit is \(\pi_t = P_t R_t = R_t^{1-\alpha} \). The Bellman’s equation can then be written as

\[V(S_t) = \max_{R_t} \left\{ R_t^{1-\alpha} + \frac{1}{1 + r} V(S_t - R_t) \right\} \]

The first order condition is

\[(1 - \alpha) R_t^{-\alpha} - \frac{1}{1 + r} V'(S_{t+1}) = 0 \]

(16)

The Envelope Condition is

\[V''(S_t) = \frac{1}{1 + r} V''(S_{t+1}) \]

(17)

Combining equation (16) and (17)

\[V'(S_t) = (1 - \alpha) R_t^{-\alpha} \]

(18)

Forward equation (18) one period and replace it into equation (16)

\[(1 - \alpha) R_t^{-\alpha} = \frac{1}{1 + r} (1 - \alpha) R_t^{-\alpha} \]

\[R_t^{-\alpha} = \frac{1}{1 + r} R_t^{-\alpha} \]

\[R_{t+1} = \left[\frac{1}{1 + r} \right]^{\frac{1}{\alpha}} \]

(19)

The growth rate of prices is given by

\[\frac{P_{t+1}}{P_t} - 1 = \frac{R_{t+1}^{1-\alpha}}{R_t^{1-\alpha}} - 1 = \left(\frac{R_{t+1}}{R_t} \right)^{-\alpha} - 1 \]

(20)

Replacing equation (19) into equation (20) we get

\[\frac{P_{t+1}}{P_t} - 1 = \left(\left[\frac{1}{1 + r} \right]^{\frac{1}{\alpha}} \right)^{-\alpha} - 1 \]
\[
\frac{P_{t+1}}{P_t} - 1 = \left[\frac{1}{1 + r} \right]^{-1} - 1
\]
\[
\frac{P_{t+1}}{P_t} - 1 = 1 + r - 1
\]
\[
\frac{P_{t+1}}{P_t} - 1 = r
\]

Interpretation: the monopolist has the option of extracting today and buying a bond with the proceeds or extracting tomorrow. If the price increase is less than \(r \), it is not optimal to wait to extract. If the price increase is greater than \(r \), it is not optimal to extract today.

To find \(P_0 \) note that equation (19) can be rewritten as
\[
R_{t+1} = AR_t
\]
where \(A = \left[\frac{1}{1 + r} \right]^{\frac{1}{2}} < 1 \). Iterating backwards on equation (21) one gets that
\[
R_t = A^t R_0 \quad (22)
\]
Replacing equation (22) into the resource constraint \(\sum_{i=0}^{\infty} R_t = S_0 \)
\[
\sum_{i=0}^{\infty} A^t R_0 = S_0 \]
\[
\frac{1}{1 - A} R_0 = S_0 \]
\[
R_0 = \left(1 - \left[\frac{1}{1 + r} \right]^{\frac{1}{2}} \right) S_0
\]
Replacing this last equation into the demand curve for period 0, \(P_0 = R_0^{-\alpha} \)
\[
P_0 = \left[\left(1 - \left[\frac{1}{1 + r} \right]^{\frac{1}{2}} \right) S_0 \right]^{-\alpha}
\]