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Factor Models

Model, Notations, and Assumptions: Consider the model

X·t
N×1

= Λ0

N×m
F 0t
m×1

+ e·t
N×1

for t = 1, ...,T

where

Λ0 - factor loadings,

F 0t - common factors (latent, unobserved),

Λ0F 0t - common component,

e·t - idiosyncratic (or error) component
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A Taxonomy of Factor Models

Exact Factor Model: {eit} exhibits no cross-sectional dependence
and no temporal dependence, so that

Cov (eit , ejs ) = 0 for all i 6= j and/or t 6= s

Approximate Factor Model: {eit} can exhibit some cross-sectional
dependence, so that

Cov (eit , ejt ) 6= 0 for at least some i 6= j

Generalized Factor Model: {eit} can exhibit both cross-sectional
and temporal dependence.
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(Classical) Exact Factor Models

Model: Consider the model

Xt
p×1

= Λ0
p×m

F 0t
m×1

+ et
p×1
, t = 1, ..., n

Assumptions:

1 E [et ] = 0
p×1
,

2 E
[
F 0t e

′
t

]
= 0

m×p
(orthogonality between factors and errors),

3 E [ete ′t ] = Ψ
p×p

= diag
(

ψ11, ..,ψpp

)
> 0 (no correlation between

idiosyncratic components),
4 E

[
F 0t
]
= 0

m×1
,

5 E
[
F 0t F

0′
t

]
= Φ0

m×m
> 0.

6 m and p are both fixed.
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(Classical) Exact Factor Models

Remark: A key feature of the classical factor model is that E [ete ′t ] is
diagonal so that the components of et are uncorrelated. Hence, the
only correlation between the components of Xt comes from the
common factors.
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Identification

Note that in the absence of further restrictions, there is an
indeterminancy in the specification given above. In particular, for any
nonsingular matrix C , we can write

Xt = Λ0F 0t + et
= Λ0CC−1F 0t + et
= Λ∗F ∗t + et ,

where Λ∗ = Λ0C and F ∗t = C
−1F 0t . It follows that the structures(

Λ0,Φ0,Ψ
)
and (Λ∗,Φ∗,Ψ) =

(
Λ0C ,C−1Φ0C ′−1,Ψ

)
are

observationally equivalent in the sense that they give the same
value of the likelihood function, so that it will not be possible to
differentiate between them based on data.
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Orthogonal Factor Case

Some of the indeterminancy can be removed by assuming that

E
[
F 0t F

0′
t

]
= Φ0 = Im .

Remark: In this case, the factors are said to be orthogonal. On the
other hand, if Φ0 is some more general symmetric, positive definite
matrix that is not diagonal; then the factors are said to be oblique.
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Orthogonal Factor Case

In the case of orthogonal factors, we have

Σ = E
[
X·tX ′·t

]
= E

[(
Λ0F 0t + et

) (
F 0′t Λ0′ + e ′t

)]
= Λ0E

[
F 0t F

0′
t

]
Λ0′ +Ψ

= Λ0Λ0′ +Ψ
(
since E

[
F 0t F

0′
t

]
= Im

)
Note that there is still an indeterminancy in this case since, for any
orthogonal matrix C , i.e., C ′C = CC ′ = Im ; we have

Σ = Λ0Λ0′ +Ψ = Λ0CC ′Λ0′ +Ψ = Λ∗Λ∗′ +Ψ

where Λ∗ = Λ0C , so that with orthogonal factors, this
indeterminancy is only caused by an orthogonal transformation, as
opposed to any nonsingular transformation.
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Additional Identifying Assumptions

Additional identifying restrictions have been introduced in the
literature to try to fully identify the classical factor model. An often
used assumption is to take

Γ
m×m

= Λ0′Ψ−1Λ0 =


γ11 0 · · · 0

0 γ22
. . .

...
...

. . . . . . 0
0 · · · 0 γmm


If the diagonal elements of Γ are ordered and all different, i.e.,

γ11 > γ22 > · · ·· > γmm ;

then Λ0 is uniquely determined up to a sign.
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Additional Identifying Assumptions

In this case, suppose, for example, we let

S
m×m

= diag (1, .., 1.− 1., 1..., 1)

i.e., a diagonal matrix with ones in all the diagonal positions except
for the i th position which has −1 instead. Then,

Γ
m×m

= Λ0′Ψ−1Λ0 = SΛ0′Ψ−1Λ0S ,

Σ = Λ0Λ0′ +Ψ = Λ0S2Λ0′ +Ψ

This indeterminancy in the sign can be removed by restricting the
elements in the first row of Λ0 to be positive.
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Maximum Likelihood Estimation of Exact Factor Models

Suppose we make a multivariate Gaussian assumption(
Ft
Xt

)
≡ i .i .d .N (0,Σ) ,

where we can partition Σ conformably with (F ′t ,X
′
t )
′ as

Σ =
(
I Λ′

Λ ΛΛ′ +Ψ

)
.

By well-known property of the multivariate normal, we have

Ft |Xt ∼ N
(

Λ′
[
ΛΛ′ +Ψ

]−1 Xt , Im −Λ′
[
ΛΛ′ +Ψ

]−1 Λ
)
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Direct Approach to ML Estimation of Exact Factor Models

Now, suppose we take a direct approach to maximum likelihood
estimation of the parameters of the exact factor model. Then, note
that since {Ft} is not observed, we would need maximize the
log-likelihood function

` (θ;X ) = ln p (X |θ)

= const− n
2
ln
∣∣ΛΛ′ +Ψ

∣∣− n

∑
t=1
X ′t
(
ΛΛ′ +Ψ

)−1 Xt
where

X =


X ′1
X ′2
...
X ′n

 , θ =

(
vec (Λ)
diag (Ψ)

)
, diag (Ψ) =


ψ11
ψ22
...

ψpp

 .
Note, however, this log-likehood is likely to be very diffi cult to
maximize.
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Alternative Approach to ML Estimation of Exact Factor
Models Based on the EM Algorithm

.Recall that the EM algorithm proceeds as follows:

(i.) Write out the complete log-likelihood `c . Note that in this case the
missing data is F = (F1, ..,Fn)

′. so let

W = (X ,F )

(ii.) E-Step: Calculate

Q
(

θ′, θ̂
(k−1))

= E
[
`c
(
θ′,W

)
|X , θ̂(k−1)

]
.
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Alternative Approach to ML Estimation of Exact Factor
Models Based on the EM Algorithm

(ii.) E-Step (con’t): In this case, we can show that

Q
(

θ′, θ̂
(k−1))

= const− n
2
ln |Ψ| − 1

2

n

∑
t=1
E
[
F ′tFt |Xt , θ̂

(k−1)]
−n
2
tr

{[
1
n

n

∑
t=1

(
XtX ′t −ΛE

[
Ft |Xt , θ̂

(k−1)]
X ′t

−XtE
[
F ′t |Xt , θ̂

(k−1)]
Λ′ +ΛE

[
FtF ′t |Xt , θ̂

(k−1)]
Λ′
)]

Ψ−1
}

where

E
[
Ft |Xt , θ̂

(k−1)]
= Λ̂(k−1)′

[
Λ̂(k−1)Λ̂(k−1)′ + Ψ̂(k−1)

]−1
Xt .
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Alternative Approach to ML Estimation of Exact Factor
Models Based on the EM Algorithm

(ii.) E-Step (con’t): In addition,

E
[
FtF ′t |Xt , θ̂

(k−1)]
= Im − Λ̂(k−1)′

[
Λ̂(k−1)Λ̂(k−1)′ + Ψ̂(k−1)

]−1
Λ̂(k−1)

+Λ̂(k−1)′
[
Λ̂(k−1)Λ̂(k−1)′ + Ψ̂(k−1)

]−1
XtX ′t

×
[
Λ̂(k−1)Λ̂(k−1)′ + Ψ̂(k−1)

]−1
Λ̂(k−1).
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Alternative Approach to ML Estimation of Exact Factor
Models Based on the EM Algorithm

(iii) M-Step: Maximize Q
(

θ′, θ̂
(k−1))

as a function of the dummy

argument θ′, i.e., determine

θ̂
(k )
= argmax

θ′
Q
(

θ′, θ̂
(k−1))

.

Remark: Note, in particular, that maximizing Q
(

θ′, θ̂
(k−1))

with

respect to Λ here is essentially the same as doing maximum likelihood
for a multivariate linear regression under Gaussian errors. Hence, we
obtain

Λ̂(k ) =

(
n

∑
t=1
XtE

[
F ′t |Xt , θ̂

(k−1)])( n

∑
t=1
E
[
FtF ′t |Xt , θ̂

(k−1)])
.

(iv) Iterate between the E-step and the M-step until convergence.
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Generalized Factor Model

.Bai and Ng (2002) and Bai (2003) studied the following generalized
factor model

Xit = λ0′i
1×m

F 0t
m×1

+ eit = cit + eit , where i = 1, ...,N; t = 1, ...,T

Stacking the observations, we can obtain the representation

X
T×N

= F 0
T×m

Λ0′
m×N

+ e
T×N

where Λ0
N×m

=
(

λ01 λ02 · · · λ0N
)′
,

X =


X ′N ,1
X ′N ,2
...

X ′N ,T

 , XN ,tN×1
=


X1,t
X2,t
...

XN ,t

 , and F 0T×m
=


F 0′1
F 0′2
...
F 0′T

 .
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Generalized Factor Model

Remark: As we will discuss in more details below, in addition to
allowing for more general assumptions on the error term {eit}, Bai
and Ng (2002) and Bai (2003) also consider the case where N is large.
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Assumptions on the Generalized Factor Model (from Bai
and Ng, 2002, and Bai, 2003)

1 Factors: There exists a positive constant M such that

E
∥∥F 0t ∥∥4 ≤ M < ∞

and
1
T

T

∑
t=1
F 0t F

0′
t

p→ ΣF > 0.

2 Factor Loadings: There exists a positive constant λ such that∥∥λ0i
∥∥ ≤ λ < ∞ ∀i

and ∥∥∥∥Λ0′Λ0

N
− ΣΛ

∥∥∥∥→ 0 for some ΣΛ > 0.
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Assumptions on the Generalized Factor Model (from Bai
and Ng, 2002, and Bai, 2003)

3. Time and Cross-Sectional Dependence and Heterogeneity:
There exists a positive constant M such that ∀N,T the following
conditions hold.

(a)
E [eit ] = 0, E

[
e8it
]
≤ M < ∞

(b) Let

γN (s, t) =
1
N

N

∑
i=1
E [eiseit ]

and

max
1≤t≤T

T

∑
s=1
|γN (s, t)| ≤ M < ∞

(Note: This latter condition puts restriction on the amount of
temporal dependence.)
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Assumptions on the Generalized Factor Model (from Bai
and Ng, 2002, and Bai, 2003)

3. Time and Cross-Sectional Dependence and Heterogeneity
(con’t): There exists a positive constant M such that ∀N,T the
following conditions hold.

(c) Let
τij ,t = E [eitejt ]

and assume that
|τij ,t | ≤ |τij | ∀t

for some τij and

max
1≤i≤N

N

∑
j=1
|τij | ≤ M < ∞.

(Note: This condition puts restriction on the amount of
cross-sectional dependence.)
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Some Remarks

1 Note that the factor models studied in Bai and Ng (2002) and Bai
(2003) are large dimensional since X·t is N × 1 for t = 1, ..,T , and
both N and T are allowed to approach infinity.

2 Consider the special case where there is no temporal dependence and
heterogeneity. Let

E
[
e·te ′·t

]
= ΓeN

and note that in this case

λmax (ΓeN ) =
√

λmax (Γe ′NΓeN )

≤
√
‖ΓeN‖1 ‖ΓeN‖∞

=

√√√√( max
1≤j≤N

N

∑
i=1
|τij |

)(
max
1≤i≤N

N

∑
j=1
|τij |

)
≤ M

so that λmax (ΓeN ) = O (1).
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Some Remarks

3. Suppose that
{
F 0t
}
≡ i .i .d . (0, Im); then,

Λ0E
[
F 0t F

0′
t

]
Λ0′ = Λ0Λ0′

so that the assumption that∥∥∥∥Λ0′Λ0

N
− ΣΛ

∥∥∥∥→ 0 for some ΣΛ > 0

implies that
λmin

(
Λ0′Λ0) ∼ N.
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More Notations

We can stack the observations to obtain

X
T×N

= F 0
T×m

Λ0′
m×N

+ e
T×N

where

X
T×N

=


X ′·1
X ′·2
...
X ′·T

 , X·t =

x1t
x2t
...
xNt

 , F 0T×m
=


F 0′1
F 0′2
...
F 0′T

 ,

Λ0

N×m
=


λ0′1
λ0′2
...

λ0′T

 .
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Estimation

For estimation, we want to choose Λ̂, F̂1, ..., F̂T so as to minimize

QNT (Λ,F1, ...,FT )

=
1
NT

T

∑
t=1
(X·t −ΛFt )

′ (X·t −ΛFt )

=
1
NT

T

∑
t=1
tr
{
(X·t −ΛFt ) (X·t −ΛFt )

′}
= tr

{
1
NT

T

∑
t=1

(
X·tX ′·t −ΛFtX ′·t − X·tF ′tΛ′ +ΛFtF ′tΛ

′)}

= tr
{
X ′X
NT
− ΛF ′X

NT
− X

′FΛ′

NT
+

ΛF ′FΛ′

NT

}
subject to the constraint F ′F/T = Im .
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Estimation

Next, note that, proceeding as if F is observed, we obtain

Λ̃′ =
(
F ′F

)−1 F ′X .
Concentrating the above objective function by evaluating it at
Λ = Λ̃, we obtain

Q̃NT (F )

= tr

{
X ′X
NT
− Λ̃F ′X

NT
− X

′F Λ̃′

NT
+

Λ̃F ′F Λ̃′

NT

}

= tr

{
X ′X
NT
− X

′F (F ′F )−1 F ′X
NT

}

= tr
{
X ′MFX
NT

}
where MF = IT − F (F ′F )−1 F ′.
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Estimation

Now, observe that minimizing Q̃NT (F ) w.r.t. F is the same as
maximizing

Q̂NT (F ) = tr
{
X ′PFX
NT

} (
where PF = F

(
F ′F

)−1 F ′)
= tr

{(
F ′F

)−1/2 F ′
XX ′

NT
F
(
F ′F

)−1/2
}

with respect to F . To solve this maximization problem, we consider
the spectral decomposition

XX ′

NT
= CDlC

′,

where
C

T×T
∈ O (T ) , i.e., C ′C = CC ′ = IT

and Dl = diag (l1, l2, ..., lT ).

John C. Chao (Econ 721 Lecture Notes) December 1, 2022 27 / 33



Estimation

Without loss of generality, we assume the ordering

l1 > l2 > · · · > lT

noting that for continuously distributed X , the eigenvalues would
differ with probability one.

Next, we partition

C
T×T

=

[
C1
T×m

C2
T×(T−m)

]
so that the columns of C1 are the eigenvectors corresponding to the
m largest eigenvalues.
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Estimation

We choose
F̂ =

√
TC1

and note that
F̂ ′F̂
T

=

√
TC ′1C1

√
T

T
= Im ,

so that this choice satisfies our normalization on the factors.
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Estimation

We now take

Λ̂
N×m

= X ′F̂
(
F̂ ′F̂

)−1
=

X ′F̂
T

(
F̂ ′F̂
T

)−1

=
X ′F̂
T

(
given that

F̂ ′F̂
T

= Im

)

=
X ′C1

√
T

T

=
X ′C1√
T
.
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Estimation

To relate this estimator to principal component analysis, note that

e ′1,mΛ̂′ =
e ′1,mC

′
1X√
T

=
c ′11X√
T
,

where c11 is the first column of C1, i.e., the eigenvector associated
with the largest eigenvalue λ1 of XX ′/ (NT ).
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Asymptotic Results

Under Assumptions 1-3 and some additional conditions, there exists a
nonsingular m×m matrix H such that

(i) √
N
(
F̂t −H ′F 0t

)
d→ N

(
0,V−1QΓtQ ′V−1

)
for each t

if
√
N/T → 0 as N,T → ∞. Here,

Q = p lim
N ,T→∞

F̂ ′F 0

T
,

Γt = lim
N→∞

1
N

N

∑
i=1

N

∑
j=1

λ0i λ
0′
j E [eitejt ] ,

V = diag (v1, ...., vm)

where v1 > · · · > vm > 0 are the eigenvalues of Σ1/2
Λ ΣFΣ1/2

Λ .
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Asymptotic Results

(ii) √
T
(

λ̂i −H−1λ0i
)

d→ N
(
0,
(
Q ′
)−1 ΦiQ−1

)
for each i

if
√
T/N → 0 as N,T → ∞. Here,

Φi = lim
T→∞

1
T

T

∑
s=1

T

∑
t=1
E
[
F 0s F

0′
t eiseit

]
.

An explicit form can be found for H as

H =
(

Λ0′Λ0

N

)
F 0′F̂
T

Ṽ−1NT

where ṼNT is an m×m matrix containing the m largest eigenvalues
of

XX ′

NT
(T × T )
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