Lecture Notes on Factor Models

John C. Chao
Econ 721 Lecture Notes
December 1, 2022

Factor Models

- Model, Notations, and Assumptions: Consider the model

$$
\underset{N \times 1}{X_{\cdot t}}=\underset{N \times m_{m \times 1}}{\Lambda_{t}^{0}} \underset{N \times 1}{0}+\underset{N . t}{e . t} \text { for } t=1, \ldots, T
$$

where
$\Lambda^{0}-$ factor loadings,
F_{t}^{0} - common factors (latent, unobserved),
$\Lambda^{0} F_{t}^{0}$ - common component,
$e_{t}-$ idiosyncratic (or error) component

A Taxonomy of Factor Models

- Exact Factor Model: $\left\{e_{i t}\right\}$ exhibits no cross-sectional dependence and no temporal dependence, so that

$$
\operatorname{Cov}\left(e_{i t}, e_{j s}\right)=0 \text { for all } i \neq j \text { and/or } t \neq s
$$

- Approximate Factor Model: $\left\{e_{i t}\right\}$ can exhibit some cross-sectional dependence, so that

$$
\operatorname{Cov}\left(e_{i t}, e_{j t}\right) \neq 0 \text { for at least some } i \neq j
$$

- Generalized Factor Model: $\left\{e_{i t}\right\}$ can exhibit both cross-sectional and temporal dependence.

(Classical) Exact Factor Models

- Model: Consider the model

$$
\underset{p \times 1}{X_{t}}=\underset{p \times m_{m \times 1}}{\Lambda_{t}^{0}} F_{t}^{0}+\underset{p \times 1}{e_{t}}, \quad t=1, \ldots, n
$$

- Assumptions:
(1) $E\left[e_{t}\right]=\underset{p \times 1}{0}$,
(2) $E\left[F_{t}^{0} e_{t}^{\prime}\right]=\underset{m \times p}{0}$ (orthogonality between factors and errors),
(3) $E\left[e_{t} e_{t}^{\prime}\right]=\underset{p \times p}{\Psi}=\operatorname{diag}\left(\psi_{11}, . ., \psi_{p p}\right)>0$ (no correlation between idiosyncratic components),
(9) $E\left[F_{t}^{0}\right]=\underset{m \times 1}{0}$,
(6) $E\left[F_{t}^{0} F_{t}^{0 \prime}\right]=\underset{m \times m}{\Phi^{0}}>0$.
(0) m and p are both fixed.

(Classical) Exact Factor Models

- Remark: A key feature of the classical factor model is that $E\left[e_{t} e_{t}^{\prime}\right]$ is diagonal so that the components of e_{t} are uncorrelated. Hence, the only correlation between the components of X_{t} comes from the common factors.

Identification

- Note that in the absence of further restrictions, there is an indeterminancy in the specification given above. In particular, for any nonsingular matrix C, we can write

$$
\begin{aligned}
X_{t} & =\Lambda^{0} F_{t}^{0}+e_{t} \\
& =\Lambda^{0} C C^{-1} F_{t}^{0}+e_{t} \\
& =\Lambda^{*} F_{t}^{*}+e_{t}
\end{aligned}
$$

where $\Lambda^{*}=\Lambda^{0} C$ and $F_{t}^{*}=C^{-1} F_{t}^{0}$. It follows that the structures $\left(\Lambda^{0}, \Phi^{0}, \Psi\right)$ and $\left(\Lambda^{*}, \Phi^{*}, \Psi\right)=\left(\Lambda^{0} C, C^{-1} \Phi^{0} C^{\prime-1}, \Psi\right)$ are observationally equivalent in the sense that they give the same value of the likelihood function, so that it will not be possible to differentiate between them based on data.

Orthogonal Factor Case

- Some of the indeterminancy can be removed by assuming that

$$
E\left[F_{t}^{0} F_{t}^{0 \prime}\right]=\Phi^{0}=I_{m}
$$

- Remark: In this case, the factors are said to be orthogonal. On the other hand, if Φ^{0} is some more general symmetric, positive definite matrix that is not diagonal; then the factors are said to be oblique.

Orthogonal Factor Case

- In the case of orthogonal factors, we have

$$
\begin{aligned}
\Sigma & =E\left[X_{\cdot t} X_{\cdot t}^{\prime}\right] \\
& =E\left[\left(\Lambda^{0} F_{t}^{0}+e_{t}\right)\left(F_{t}^{0 \prime} \Lambda^{0 \prime}+e_{t}^{\prime}\right)\right] \\
& =\Lambda^{0} E\left[F_{t}^{0} F_{t}^{0 \prime}\right] \Lambda^{0 \prime}+\Psi \\
& =\Lambda^{0} \Lambda^{0 \prime}+\Psi\left(\text { since } E\left[F_{t}^{0} F_{t}^{0 \prime}\right]=I_{m}\right)
\end{aligned}
$$

- Note that there is still an indeterminancy in this case since, for any orthogonal matrix C, i.e., $C^{\prime} C=C C^{\prime}=I_{m}$; we have

$$
\Sigma=\Lambda^{0} \Lambda^{0 \prime}+\Psi=\Lambda^{0} C C^{\prime} \Lambda^{0 \prime}+\Psi=\Lambda^{*} \Lambda^{* \prime}+\Psi
$$

where $\Lambda^{*}=\Lambda^{0} C$, so that with orthogonal factors, this indeterminancy is only caused by an orthogonal transformation, as opposed to any nonsingular transformation.

Additional Identifying Assumptions

- Additional identifying restrictions have been introduced in the literature to try to fully identify the classical factor model. An often used assumption is to take

$$
\Gamma_{m \times m}=\Lambda^{0 \prime} \Psi^{-1} \Lambda^{0}=\left(\begin{array}{cccc}
\gamma_{11} & 0 & \cdots & 0 \\
0 & \gamma_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \gamma_{m m}
\end{array}\right)
$$

If the diagonal elements of Γ are ordered and all different, i.e.,

$$
\gamma_{11}>\gamma_{22}>\cdots \cdots>\gamma_{m m}
$$

then Λ^{0} is uniquely determined up to a sign.

Additional Identifying Assumptions

- In this case, suppose, for example, we let

$$
\underset{m \times m}{S}=\operatorname{diag}(1, \ldots, 1 .-1 ., 1 \ldots, 1)
$$

i.e., a diagonal matrix with ones in all the diagonal positions except for the $i^{t h}$ position which has -1 instead. Then,

$$
\begin{aligned}
\underset{m \times m}{\Gamma} & =\Lambda^{0 \prime} \Psi^{-1} \Lambda^{0}=S \Lambda^{0 \prime} \Psi^{-1} \Lambda^{0} S \\
\Sigma & =\Lambda^{0} \Lambda^{0 \prime}+\Psi=\Lambda^{0} S^{2} \Lambda^{0 \prime}+\Psi
\end{aligned}
$$

- This indeterminancy in the sign can be removed by restricting the elements in the first row of Λ^{0} to be positive.

Maximum Likelihood Estimation of Exact Factor Models

- Suppose we make a multivariate Gaussian assumption

$$
\binom{F_{t}}{X_{t}} \equiv \text { i.i.d. } N(0, \Sigma)
$$

where we can partition Σ conformably with $\left(F_{t}^{\prime}, X_{t}^{\prime}\right)^{\prime}$ as

$$
\Sigma=\left(\begin{array}{cc}
I & \Lambda^{\prime} \\
\Lambda & \Lambda \Lambda^{\prime}+\Psi
\end{array}\right)
$$

By well-known property of the multivariate normal, we have

$$
F_{t} \mid X_{t} \sim N\left(\Lambda^{\prime}\left[\Lambda \Lambda^{\prime}+\Psi\right]^{-1} X_{t}, I_{m}-\Lambda^{\prime}\left[\Lambda \Lambda^{\prime}+\Psi\right]^{-1} \Lambda\right)
$$

Direct Approach to ML Estimation of Exact Factor Models

- Now, suppose we take a direct approach to maximum likelihood estimation of the parameters of the exact factor model. Then, note that since $\left\{F_{t}\right\}$ is not observed, we would need maximize the log-likelihood function

$$
\begin{aligned}
\ell(\theta ; X) & =\ln p(X \mid \theta) \\
& =\text { const }-\frac{n}{2} \ln \left|\Lambda \Lambda^{\prime}+\Psi\right|-\sum_{t=1}^{n} X_{t}^{\prime}\left(\Lambda \Lambda^{\prime}+\Psi\right)^{-1} X_{t}
\end{aligned}
$$

where

$$
X=\left(\begin{array}{c}
X_{1}^{\prime} \\
X_{2}^{\prime} \\
\vdots \\
X_{n}^{\prime}
\end{array}\right), \theta=\binom{\operatorname{vec}(\Lambda)}{\operatorname{diag}(\Psi)}, \operatorname{diag}(\Psi)=\left(\begin{array}{c}
\psi_{11} \\
\psi_{22} \\
\vdots \\
\psi_{p p}
\end{array}\right)
$$

Note, however, this log-likehood is likely to be very difficult to maximize.

Alternative Approach to ML Estimation of Exact Factor Models Based on the EM Algorithm

- .Recall that the EM algorithm proceeds as follows:
(i.) Write out the complete log-likelihood ℓ_{c}. Note that in this case the missing data is $F=\left(F_{1}, . ., F_{n}\right)^{\prime}$. so let

$$
W=(X, F)
$$

(ii.) E-Step: Calculate

$$
Q\left(\theta^{\prime}, \widehat{\theta}^{(k-1)}\right)=E\left[\ell_{c}\left(\theta^{\prime}, W\right) \mid X, \widehat{\theta}^{(k-1)}\right]
$$

Alternative Approach to ML Estimation of Exact Factor Models Based on the EM Algorithm

(ii.) E-Step (con't): In this case, we can show that

$$
\begin{aligned}
& Q\left(\theta^{\prime}, \widehat{\theta}^{(k-1)}\right) \\
= & \text { const }-\frac{n}{2} \ln |\Psi|-\frac{1}{2} \sum_{t=1}^{n} E\left[F_{t}^{\prime} F_{t} \mid X_{t}, \widehat{\theta}^{(k-1)}\right] \\
& -\frac{n}{2} \operatorname{tr}\left\{\left[\frac { 1 } { n } \sum _ { t = 1 } ^ { n } \left(X_{t} X_{t}^{\prime}-\Lambda E\left[F_{t} \mid X_{t}, \widehat{\theta}^{(k-1)}\right] X_{t}^{\prime}\right.\right.\right. \\
& \left.\left.\left.\quad-X_{t} E\left[F_{t}^{\prime} \mid X_{t}, \widehat{\theta}^{(k-1)}\right] \Lambda^{\prime}+\Lambda E\left[F_{t} F_{t}^{\prime} \mid X_{t}, \widehat{\theta}^{(k-1)}\right] \Lambda^{\prime}\right)\right] \Psi^{-1}\right\}
\end{aligned}
$$

where

$$
E\left[F_{t} \mid X_{t}, \widehat{\theta}^{(k-1)}\right]=\widehat{\Lambda}^{(k-1) \prime}\left[\widehat{\Lambda}^{(k-1)} \widehat{\Lambda}^{(k-1) \prime}+\widehat{\Psi}^{(k-1)}\right]^{-1} X_{t}
$$

Alternative Approach to ML Estimation of Exact Factor Models Based on the EM Algorithm

(ii.) E-Step (con't): In addition,

$$
\begin{aligned}
& E\left[F_{t} F_{t}^{\prime} \mid X_{t}, \widehat{\theta}^{(k-1)}\right] \\
&=\quad I_{m}-\widehat{\Lambda}^{(k-1) \prime}\left[\widehat{\Lambda}^{(k-1)} \widehat{\Lambda}^{(k-1) \prime}+\widehat{\Psi}^{(k-1)}\right]^{-1} \widehat{\Lambda}^{(k-1)} \\
&+\widehat{\Lambda}^{(k-1) \prime}[{\left[\widehat{\Lambda}^{(k-1)} \widehat{\Lambda}^{(k-1) \prime}+\widehat{\Psi}^{(k-1)}\right]^{-1} X_{t} X_{t}^{\prime} } \\
& \times\left[\widehat{\Lambda}^{(k-1)} \widehat{\Lambda}^{(k-1) \prime}+\widehat{\Psi}^{(k-1)}\right]^{-1} \widehat{\Lambda}^{(k-1)}
\end{aligned}
$$

Alternative Approach to ML Estimation of Exact Factor Models Based on the EM Algorithm

(iii) M-Step: Maximize $Q\left(\theta^{\prime}, \widehat{\theta}^{(k-1)}\right)$ as a function of the dummy argument θ^{\prime}, i.e., determine

$$
\widehat{\theta}^{(k)}=\arg \max _{\theta^{\prime}} Q\left(\theta^{\prime}, \widehat{\theta}^{(k-1)}\right) .
$$

Remark: Note, in particular, that maximizing $Q\left(\theta^{\prime}, \widehat{\theta}^{(k-1)}\right)$ with respect to Λ here is essentially the same as doing maximum likelihood for a multivariate linear regression under Gaussian errors. Hence, we obtain

$$
\widehat{\Lambda}^{(k)}=\left(\sum_{t=1}^{n} X_{t} E\left[F_{t}^{\prime} \mid X_{t}, \widehat{\theta}^{(k-1)}\right]\right)\left(\sum_{t=1}^{n} E\left[F_{t} F_{t}^{\prime} \mid X_{t}, \widehat{\theta}^{(k-1)}\right]\right)
$$

(iv) Iterate between the E-step and the M-step until convergence.

Generalized Factor Model

- .Bai and Ng (2002) and Bai (2003) studied the following generalized factor model

$$
X_{i t}=\underset{\substack{\lambda_{i}^{0 \prime} \\ 1 \times m \times 1}}{F_{t}^{0}}+e_{i t}=c_{i t}+e_{i t}, \text { where } i=1, \ldots, N ; t=1, \ldots, T
$$

- Stacking the observations, we can obtain the representation

$$
\underset{T \times N}{X}=\underset{T \times m m \times N}{F^{0}} \Lambda_{T \times N}^{0 \prime}
$$

where $\underset{N \times m}{\Lambda^{0}}=\left(\begin{array}{llll}\lambda_{1}^{0} & \lambda_{2}^{0} & \cdots & \lambda_{N}^{0}\end{array}\right)^{\prime}$,

$$
X=\left(\begin{array}{c}
X_{N, 1}^{\prime} \\
X_{N, 2}^{\prime} \\
\vdots \\
X_{N, T}^{\prime}
\end{array}\right), \underset{N \times 1}{X_{N, t}}=\left(\begin{array}{c}
X_{1, t} \\
X_{2, t} \\
\vdots \\
X_{N, t}
\end{array}\right), \text { and } F_{\times m}^{0}=\left(\begin{array}{c}
F_{1}^{0 \prime} \\
F_{2}^{0 \prime} \\
\vdots \\
F_{T}^{0 \prime}
\end{array}\right)
$$

Generalized Factor Model

- Remark: As we will discuss in more details below, in addition to allowing for more general assumptions on the error term $\left\{e_{i t}\right\}$, Bai and Ng (2002) and Bai (2003) also consider the case where N is large.

Assumptions on the Generalized Factor Model (from Bai and Ng, 2002, and Bai, 2003)

(1) Factors: There exists a positive constant M such that

$$
E\left\|F_{t}^{0}\right\|^{4} \leq M<\infty
$$

and

$$
\frac{1}{T} \sum_{t=1}^{T} F_{t}^{0} F_{t}^{0 \prime} \xrightarrow{p} \Sigma_{F}>0
$$

(2) Factor Loadings: There exists a positive constant $\bar{\lambda}$ such that

$$
\left\|\lambda_{i}^{0}\right\| \leq \bar{\lambda}<\infty \forall i
$$

and

$$
\left\|\frac{\Lambda^{0 \prime} \Lambda^{0}}{N}-\Sigma_{\Lambda}\right\| \rightarrow 0 \text { for some } \Sigma_{\Lambda}>0
$$

Assumptions on the Generalized Factor Model (from Bai and Ng, 2002, and Bai, 2003)

3. Time and Cross-Sectional Dependence and Heterogeneity: There exists a positive constant M such that $\forall N, T$ the following conditions hold.
(a)

$$
E\left[e_{i t}\right]=0, E\left[e_{i t}^{8}\right] \leq M<\infty
$$

(b) Let

$$
\gamma_{N}(s, t)=\frac{1}{N} \sum_{i=1}^{N} E\left[e_{i s} e_{i t}\right]
$$

and

$$
\max _{1 \leq t \leq T} \sum_{s=1}^{T}\left|\gamma_{N}(s, t)\right| \leq M<\infty
$$

(Note: This latter condition puts restriction on the amount of temporal dependence.)

Assumptions on the Generalized Factor Model (from Bai and Ng, 2002, and Bai, 2003)

3. Time and Cross-Sectional Dependence and Heterogeneity (con't): There exists a positive constant M such that $\forall N, T$ the following conditions hold.
(c) Let

$$
\tau_{i j, t}=E\left[e_{i t} e_{j t}\right]
$$

and assume that

$$
\left|\tau_{i j, t}\right| \leq\left|\tau_{i j}\right| \forall t
$$

for some $\tau_{i j}$ and

$$
\max _{1 \leq i \leq N} \sum_{j=1}^{N}\left|\tau_{i j}\right| \leq M<\infty
$$

(Note: This condition puts restriction on the amount of cross-sectional dependence.)

Some Remarks

(1) Note that the factor models studied in Bai and Ng (2002) and Bai (2003) are large dimensional since $X_{. t}$ is $N \times 1$ for $t=1, \ldots, T$, and both N and T are allowed to approach infinity.
(2) Consider the special case where there is no temporal dependence and heterogeneity. Let

$$
E\left[e_{\cdot} e_{\cdot t}^{\prime}\right]=\Gamma_{N}^{e}
$$

and note that in this case

$$
\begin{aligned}
\lambda_{\max }\left(\Gamma_{N}^{e}\right) & =\sqrt{\lambda_{\max }\left(\Gamma_{N}^{e} \Gamma_{N}^{e}\right)} \\
& \leq \sqrt{\left\|\Gamma_{N}^{e}\right\|_{1}\left\|\Gamma_{N}^{e}\right\|_{\infty}} \\
& =\sqrt{\left(\max _{1 \leq j \leq N} \sum_{i=1}^{N}\left|\tau_{i j}\right|\right)\left(\max _{1 \leq i \leq N} \sum_{j=1}^{N}\left|\tau_{i j}\right|\right)} \\
& \leq M
\end{aligned}
$$

so that $\lambda_{\max }\left(\Gamma_{N}^{e}\right)=O(1)$.

Some Remarks

3. Suppose that $\left\{F_{t}^{0}\right\} \equiv$ i.i.d. $\left(0, I_{m}\right)$; then,

$$
\Lambda^{0} E\left[F_{t}^{0} F_{t}^{0 \prime}\right] \Lambda^{0 \prime}=\Lambda^{0} \Lambda^{0 \prime}
$$

so that the assumption that

$$
\left\|\frac{\Lambda^{0 \prime} \Lambda^{0}}{N}-\Sigma_{\Lambda}\right\| \rightarrow 0 \text { for some } \Sigma_{\Lambda}>0
$$

implies that

$$
\lambda_{\min }\left(\Lambda^{0 \prime} \Lambda^{0}\right) \sim N
$$

More Notations

- We can stack the observations to obtain

$$
\underset{T \times N}{X}=\underset{T \times m m \times N}{F^{0}} \Lambda^{0 \prime}+\underset{T \times N}{e}
$$

where

$$
\begin{aligned}
{\underset{T \times N}{ }}_{X}^{X} & =\left(\begin{array}{c}
X_{\cdot 1}^{\prime} \\
X_{2}^{\prime} \\
\vdots \\
X_{\cdot}^{\prime}
\end{array}\right), X_{\cdot t}=\left(\begin{array}{c}
x_{1 t} \\
x_{2 t} \\
\vdots \\
x_{N t}
\end{array}\right), F_{T \times m}^{0}=\left(\begin{array}{c}
F_{1}^{0 \prime} \\
F_{2}^{0 \prime} \\
\vdots \\
F_{T}^{0 \prime}
\end{array}\right) \\
\Lambda_{N \times m}^{0} & =\left(\begin{array}{c}
\lambda_{1}^{0 \prime} \\
\lambda_{2}^{0 \prime} \\
\vdots \\
\lambda_{T}^{0 \prime}
\end{array}\right) .
\end{aligned}
$$

Estimation

- For estimation, we want to choose $\widehat{\Lambda}, \widehat{F}_{1}, \ldots, \widehat{F}_{T}$ so as to minimize

$$
\begin{aligned}
& Q_{N T}\left(\Lambda, F_{1}, \ldots, F_{T}\right) \\
= & \frac{1}{N T} \sum_{t=1}^{T}\left(X_{\cdot t}-\Lambda F_{t}\right)^{\prime}\left(X_{\cdot t}-\Lambda F_{t}\right) \\
= & \frac{1}{N T} \sum_{t=1}^{T} \operatorname{tr}\left\{\left(X_{\cdot t}-\Lambda F_{t}\right)\left(X_{\cdot t}-\Lambda F_{t}\right)^{\prime}\right\} \\
= & \operatorname{tr}\left\{\frac{1}{N T} \sum_{t=1}^{T}\left(X_{\cdot t} X_{\cdot t}^{\prime}-\Lambda F_{t} X_{\cdot t}^{\prime}-X_{\cdot t} F_{t}^{\prime} \Lambda^{\prime}+\Lambda F_{t} F_{t}^{\prime} \Lambda^{\prime}\right)\right\} \\
= & \operatorname{tr}\left\{\frac{X^{\prime} X}{N T}-\frac{\Lambda F^{\prime} X}{N T}-\frac{X^{\prime} F \Lambda^{\prime}}{N T}+\frac{\Lambda F^{\prime} F \Lambda^{\prime}}{N T}\right\}
\end{aligned}
$$

subject to the constraint $F^{\prime} F / T=I_{m}$.

Estimation

- Next, note that, proceeding as if F is observed, we obtain

$$
\widetilde{\Lambda}^{\prime}=\left(F^{\prime} F\right)^{-1} F^{\prime} X
$$

- Concentrating the above objective function by evaluating it at $\Lambda=\widetilde{\Lambda}$, we obtain

$$
\begin{aligned}
& \widetilde{Q}_{N T}(F) \\
= & \operatorname{tr}\left\{\frac{X^{\prime} X}{N T}-\frac{\widetilde{\Lambda} F^{\prime} X}{N T}-\frac{X^{\prime} F \widetilde{\Lambda}^{\prime}}{N T}+\frac{\widetilde{\Lambda} F^{\prime} F \widetilde{\Lambda}^{\prime}}{N T}\right\} \\
= & \operatorname{tr}\left\{\frac{X^{\prime} X}{N T}-\frac{X^{\prime} F\left(F^{\prime} F\right)^{-1} F^{\prime} X}{N T}\right\} \\
= & \operatorname{tr}\left\{\frac{X^{\prime} M_{F} X}{N T}\right\}
\end{aligned}
$$

where $M_{F}=I_{T}-F\left(F^{\prime} F\right)^{-1} F^{\prime}$.

Estimation

- Now, observe that minimizing $\widetilde{Q}_{N T}(F)$ w.r.t. F is the same as maximizing

$$
\begin{aligned}
\widehat{Q}_{N T}(F) & =\operatorname{tr}\left\{\frac{X^{\prime} P_{F} X}{N T}\right\}\left(\text { where } P_{F}=F\left(F^{\prime} F\right)^{-1} F^{\prime}\right) \\
& =\operatorname{tr}\left\{\left(F^{\prime} F\right)^{-1 / 2} F^{\prime} \frac{X X^{\prime}}{N T} F\left(F^{\prime} F\right)^{-1 / 2}\right\}
\end{aligned}
$$

with respect to F. To solve this maximization problem, we consider the spectral decomposition

$$
\frac{X X^{\prime}}{N T}=C D_{l} C^{\prime}
$$

where

$$
\begin{aligned}
& \qquad \underset{T \times T}{C} \in \mathcal{O}(T) \text {, i.e., } C^{\prime} C=C C^{\prime}=I_{T} \\
& \text { and } D_{l}=\operatorname{diag}\left(I_{1}, I_{2}, \ldots, I_{T}\right) .
\end{aligned}
$$

Estimation

- Without loss of generality, we assume the ordering

$$
I_{1}>I_{2}>\cdots>I_{T}
$$

noting that for continuously distributed X, the eigenvalues would differ with probability one.

- Next, we partition

$$
\underset{T \times T}{C}=\left[\begin{array}{cc}
C_{1} & C_{2} \\
T \times m & T \times(T-m)
\end{array}\right]
$$

so that the columns of C_{1} are the eigenvectors corresponding to the m largest eigenvalues.

Estimation

- We choose

$$
\widehat{F}=\sqrt{T} C_{1}
$$

and note that

$$
\frac{\widehat{F}^{\prime} \widehat{F}}{T}=\frac{\sqrt{T} C_{1}^{\prime} C_{1} \sqrt{T}}{T}=I_{m}
$$

so that this choice satisfies our normalization on the factors.

Estimation

- We now take

$$
\begin{aligned}
\widehat{N X}_{\widehat{\Lambda}} & =X^{\prime} \widehat{F}\left(\widehat{F}^{\prime} \widehat{F}\right)^{-1} \\
& =\frac{X^{\prime} \widehat{F}}{T}\left(\frac{\widehat{F}^{\prime} \widehat{F}}{T}\right)^{-1} \\
& =\frac{X^{\prime} \widehat{F}}{T}\left(\text { given that } \frac{\hat{F}^{\prime} \widehat{F}}{T}=I_{m}\right) \\
& =\frac{X^{\prime} C_{1} \sqrt{T}}{T} \\
& =\frac{X^{\prime} C_{1}}{\sqrt{T}}
\end{aligned}
$$

Estimation

- To relate this estimator to principal component analysis, note that

$$
e_{1, m}^{\prime} \widehat{\Lambda}^{\prime}=\frac{e_{1, m}^{\prime} C_{1}^{\prime} X}{\sqrt{T}}=\frac{c_{11}^{\prime} X}{\sqrt{T}}
$$

where c_{11} is the first column of C_{1}, i.e., the eigenvector associated with the largest eigenvalue λ_{1} of $X X^{\prime} /(N T)$.

Asymptotic Results

- Under Assumptions 1-3 and some additional conditions, there exists a nonsingular $m \times m$ matrix H such that
(i)

$$
\sqrt{N}\left(\widehat{F}_{t}-H^{\prime} F_{t}^{0}\right) \xrightarrow{d} N\left(0, V^{-1} Q \Gamma_{t} Q^{\prime} V^{-1}\right) \text { for each } t
$$

if $\sqrt{N} / T \rightarrow 0$ as $N, T \rightarrow \infty$. Here,

$$
\begin{aligned}
Q & =p \lim _{N, T \rightarrow \infty} \frac{\widehat{F}^{\prime} F^{0}}{T}, \\
\Gamma_{t} & =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{i}^{0} \lambda_{j}^{0 \prime} E\left[e_{i t} e_{j t}\right] \\
V & =\operatorname{diag}\left(v_{1}, \ldots, v_{m}\right)
\end{aligned}
$$

where $v_{1}>\cdots>v_{m}>0$ are the eigenvalues of $\Sigma_{\Lambda}^{1 / 2} \Sigma_{F} \Sigma_{\Lambda}^{1 / 2}$.

Asymptotic Results

(ii)

$$
\sqrt{T}\left(\hat{\lambda}_{i}-H^{-1} \lambda_{i}^{0}\right) \xrightarrow{d} N\left(0,\left(Q^{\prime}\right)^{-1} \Phi_{i} Q^{-1}\right) \text { for each } i
$$

if $\sqrt{T} / N \rightarrow 0$ as $N, T \rightarrow \infty$. Here,

$$
\Phi_{i}=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{s=1}^{T} \sum_{t=1}^{T} E\left[F_{s}^{0} F_{t}^{0 \prime} e_{i s} e_{i t}\right]
$$

- An explicit form can be found for H as

$$
H=\left(\frac{\Lambda^{0 \prime} \Lambda^{0}}{N}\right) \frac{F^{0 \prime} \widehat{F}}{T} \widetilde{V}_{N T}^{-1}
$$

where $\widetilde{V}_{N T}$ is an $m \times m$ matrix containing the m largest eigenvalues of

$$
\frac{X X^{\prime}}{N T}(T \times T)
$$

