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1 Introduction

Theoretical and empirical analyses of supply in differentiated product markets usually as-

sume that firms have complete information (CI) and set prices to maximize their current

profits. If an alternative is considered, it is typically tacit collusion with repeated CI stage

games, which, in the empirical literature is often modeled using a “conduct parameter”

(Bresnahan (1982), Lau (1982), Nevo (1998)) where each firm uses a standard CI Nash

first-order conditions except that some weight is placed on the profits of its rivals. These

CI formulations are tractable and, under appropriate assumptions, they are econometrically

identified (Berry and Haile (2014)).

However, assuming that firms have CI about all factors that may affect their rivals’

pricing choices is a strong assumption. Public companies closely guard information about the

profitability of individual product lines and government agencies presume that information on

revenues, costs and margins is competitively sensitive and highly confidential during antitrust

investigations even while they use models that assume CI to model market outcomes. There

is also surprisingly little evidence that CI oligopoly models accurately predict qualitative or

quantitative changes in pricing behavior after structural changes in market conditions, such

as the consummation of a merger.

It is clearly important to know whether predictions would change, in a material way, if

the CI assumption is relaxed. A natural assumption for an economist is that, when firms

have privately-observed state variables, a firm will try to learn from its rivals’ choices (i.e.,

their prices) about those variables, in order to try to more accurately predict how those

rivals will price in the future. If this happens, then firms may also have incentives to distort
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their prices in order to affect what their rivals will expect.

We develop models where this logic applies. Specifically, we will assume that each firm has

a payoff-relevant state variable, such as its marginal cost, which is positively but imperfectly

serially-correlated and unobserved by rivals. Prices are perfectly observed. We will consider

fully separating equilibria where, in equilibrium, a firm’s chosen price perfectly reveals its

current cost, and beliefs have a simple form. In these equilibria, all firms that do not have

the lowest possible marginal cost set prices above static best response levels to credibly

signal this information to their rivals. This can, in turn, cause static best response prices to

increase, and signaling prices to rise further, a positive feedback that can raise equilibrium

prices significantly above static CI Nash levels even when there is limited uncertainty about

costs, as well as generating significant price volatility. We provide examples where private

information about 1% of marginal costs, which applied economists would likely view as small

enough to ignore, leads to prices 10% higher than they would be under complete information.

While Mailath (1989) shows that our mechanism can raise prices in a two period model, we

believe that we are the first to show these effects may be large (in a two period model they

are typically small), and the first to take this type of model to data.

We apply our model to horizontal mergers. When an oligopoly market becomes more

concentrated, the incentives of all firms to invest in raising their rivals’ prices by signaling

tend to become stronger. This leads our model to typically predict larger price increases

than the CI Nash models that are currently used for quantitative merger analysis. We find

large effects when all firms are symmetric, and when the merging firms are different to rivals.

We calibrate our model using data from the U.S. beer market around the time of the

2008 Miller-Coors (MC) joint venture (JV). After the JV, MC and its larger domestic rival
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Anheuser-Busch (AB) increased prices by similar amounts. Miller and Weinberg (2017)

(MW) show that this is inconsistent with static CI Nash behavior, which would predict that,

if the merging parties raise their prices, non-merging firms would respond with smaller price

increases. MW use the observed price changes to estimate a conduct parameter, interpreted

as reflecting post-merger tacit collusion by domestic brewers, and Miller, Sheu and Weinberg

(2020) (MSW) use the price change to calibrate a model of price leadership, in which the

JV raises prices by relaxing incentive compatibility constraints.

Our calibration takes a different approach. We calibrate the parameters of our model

using only pre-JV data, and show that it predicts how much AB and MC’s prices increase

after the JV, as well as several qualitative changes in price dynamics. We are not aware

of previous retrospectives that have considered changes in price dynamics. If we assume

that brewers have private information about the “per mile” efficiency of their distribution

networks, then our model can also explain significant, and newly identified, changes in cost

pass-through by the domestic brewers after the JV. In contrast, CI models, with or without

changes in conduct, fail to match several patterns in the data.

The novelty of our analysis leads to several limitations which future work may relax.

First, we assume that each firm has exactly one privately-known state variable and can send

exactly one signal per period. This restricts the types of mergers that we can consider,

although our assumptions are reasonable in our application. Second, we only consider fully

separating equilibria, even though we also find that these may not exist for some parameters.

Sweeting et al. (2022) consider pooling equilibria in a game where the merging parties have

private information about a synergy. Third, while we present evidence against particular

collusive models, collusion cannot be rejected more generally because folk theorems imply
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that some collusion model is likely to be able to explain any observed change in pricing.

However, we can conclude that tacit collusion is not a necessary ingredient of an explanation

for what happened in the beer data.

After a review of the related literature, Section 2 presents our model and equilibrium

concept. Section 3 presents examples and illustrates the implications for merger analysis.

Section 4 provides our empirical application. Section 5 concludes. Several Appendices,

intended for online publication, detail our computational algorithms, additional examples,

proofs of existence and uniqueness for a model with linear demand, our data and additional

empirical analyses.

Related Literature. Shapiro (1986) and Vives (2011) examine how equilibrium prices and

welfare change when marginal costs are private information in one-shot oligopoly models.

Most of our focus will be on models where marginal costs lie in quite narrow intervals and

the static effects that these papers identify are very small. A large theoretical literature has

considered one-shot signaling models where only one player has private information. The

classic Industrial Organization example is the Milgrom and Roberts (1982) limit pricing

model, where an incumbent monopolist may lower its first period price to deter entry in a

two-period game. Sweeting, Roberts and Gedge (2020) (SRG) develop finite and infinite-

horizon versions of this model where an incumbent monopolist’s type changes over time, as

we will assume in this paper.1 They calibrate the model and show that it can explain why

incumbent airlines dropped prices by as much as 15% when Southwest threatened entry on

monopoly routes.

1Kaya (2009) and Toxvaerd (2017) analyze one-sided, dynamic signaling games where the informed firm’s
type is fixed, and, in equilibrium, the informed firm signals until its reputation is established.
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There are important differences between this paper and SRG, despite the common interest

in signaling. Price effects are large in SRG because (i) marginal costs are estimated to be

very persistent, (ii) entry causes a large permanent decrease in profits, and (iii) the assumed

entry process implies that successful deterrence in one quarter can be expected to preserve

monopoly for several years. The current paper considers a more common setting (price-

setting oligopoly) and a more policy relevant application (mergers). In equilibrium, a signal

in one period only raises its rivals prices in the next period. Instead, we obtain quite

large price effects, even with parameters that imply limited correlation in costs, because of

feedbacks that exist when rivals are simultaneously signaling. These feedbacks are absent in

SRG.

The literature on games where multiple players signal simultaneously is limited.2 Mailath

(1988) identifies conditions under which a separating equilibrium will exist in an abstract

two-period game with continuous types, and shows that the conditions on payoffs required for

the uniqueness of each player’s separating best response function are similar to those shown

by Mailath (1987) for models where only one player is signaling (Mailath and von Thadden

(2013) generalize these conditions). Mailath (1989) applies these results to a two-period

pricing game where differentiated firms have static linear demands and marginal costs that

are private information but fixed. Firms raise their prices in the first period in order to try to

raise their rivals’ prices in the second period. We rely on Mailath’s results to characterize best

response signaling pricing functions, and we will focus on the magnitude, empirical relevance

and implications of the equilibrium effects in multi-period settings with more standard forms

2Bonatti, Cisternas and Toikka (2017) analyze linear signaling strategies in a continuous-time Cournot
game where each firm’s marginal cost is private information and fixed, but firms cannot perfectly observe
the quantities that their rivals choose. We will assume that prices are perfectly observable.

6



of differentiated product demand.3 Mester (1992) extends this approach to a three-period

quantity-setting model where marginal costs change over time, and she shows that signaling,

which leads to increased output in this case, happens in the first two periods.

Fershtman and Pakes (2012) and Asker et al. (2020) take an alternative approach to

dynamic games with asymmetric information. Assuming discrete states and actions, they

reduce the computational burden using the concept of Experience-Based Equilibrium (EBE)

where firms have beliefs about their payoffs from different actions rather than rivals’ types.4

Our equilibrium concept is more standard, and the computational burden is reduced by

focusing on fully separating equilibria in continuous action games.

Our paper is partly motivated by the horizontal merger retrospectives that often identify

price increases after consummated mergers (Ashenfelter, Hosken and Weinberg (2014)) and

that merger simulations and other calculations that assume CI Nash, such as pricing pressure

indices, predict poorly (Peters (2009) and Garmon (2017)).5 This leads naturally to the

question of whether alternative models can do better at explaining the effects of mergers.

3Caminal (1990) considers a two-period linear demand duopoly model where firms have private informa-
tion about the demand for their own product, and also raise prices to signal that they will set higher prices
in the final period.

4The rest of the literature on dynamic games, following Ericson and Pakes (1995) and Pakes and McGuire
(1994), has assumed that players observe all state variables, apart from iid shocks to the payoffs from different
actions, eliminating any role for signaling.

5Ashenfelter, Hosken and Weinberg (2014) note that retrospectives have not typically found price in-
creases in banking. Interestingly, the Mester (1992) analysis of a Cournot oligopoly model with asymmetric
information was explicitly motivated by a desire to explain why, contrary to the predictions of Nash and
tacit collusion models, concentration appeared to lead to more competitive behavior in banking.
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2 Model

2.1 Specification.

A fixed set of N risk-neutral firms play a discrete time game with periods, t = 1, ..., T , where

T ≤ ∞. The discount factor is β = 0.99 unless otherwise stated. If a firm sells multiple

products, we will assume that they have identical demands and realized marginal costs,

and are sold at a single price. There may be commonly known differences in demand and

marginal costs across firms, but exactly one dimension of a firm’s type is private information.

All firms observe current and past prices.

We will consider two different formulations of types which we will use for different pur-

poses. Our explanation of the model, our empirical application and several examples will

assume that a firm’s type can take any value on a known compact interval [θi, θi]. We will use

a model where types can take two discrete values, θi and θi, when we want to explore what

happens for many different parameters or different numbers of firms as the computational

burden is lower. In both cases, types evolve exogenously, and independently according to

a first-order Markov process, ψi : θi,t−1 → θi,t. This assumption is consistent with most

treatments of productivity changes in the structural production function literature following

Olley and Pakes (1996).

Within-Period Timing. In each period t of the game, timing is as follows. Firms enter

period t with their t − 1 types, which then evolve according to ψi. Firms observe their

own new types, but neither the previous nor the new types of other firms.6 Each firm

6Our fully separating equilibria would be unchanged if t− 2 types were revealed.
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simultaneously chooses and commits to its price, pi,t, with no menu costs. Demand is static

and time-invariant, and one period profits are πi(pi,t, p−i,t, θi,t) and we assume that ∂πi
∂p−i,t

> 0

for all −i.

Assumptions. For the continuous type game, we make the following assumption which

implies types are positively, but not perfectly, serially correlated, in the sense that the

likelihood of a higher type increases in the previous period’s type.

Assumption 1 Type Transitions for the Continuous Type Model. The conditional

pdf ψi(θi,t|θi,t−1)

1. has full support, so that the type can transition from any value on the support to any

other value in a single period.

2. is continuous and differentiable (with appropriate one-sided derivatives at the bound-

aries).

3. for any θi,t−1 there is some θ′ such that
∂ψi(θi,t|θi,t−1)

∂θi,t−1
|θi,t=θ′ = 0 and

∂ψi(θi,t|θi,t−1)

∂θi,t−1
< 0 for

all θi,t < θ′ and
∂ψi(θi,t|θi,t−1)

∂θi,t−1
> 0 for all θi,t > θ′.

We will consider fully separating equilibria where each firm will have a correct belief

about each rival’s previous period type. For convenience, we assume that beliefs about types

in t = 1 have the same structure.

Assumption 2 Initial Period Beliefs. Firms know what their rivals’ types were in a

fictitious prior period, t = 0.
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2.2 Fully Separating Equilibrium in a Finite Horizon and Contin-
uous Type Game.

We now describe the equilibrium for a game with two ex-ante symmetric single-product

duopolists.

Final Period (T ). In the final period, firms use Bayesian Nash Equilibrium (BNE) strate-

gies that maximize their expected payoffs given their own types, their beliefs about their

rival’s type and their rival’s strategy. If firm j believes that firm i’s period T − 1 type was

θ̂ji,T−1 and j’s period T pricing function is Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1)

7, then a type θi,T i will set

a price

p∗i,T (θi,T , θj,T−1, θ̂
j
i,T−1) = argmax

pi,T

∫ θj

θj

π(pi,T , Pj,T (θj,T , θj,T−1, θ̂
j
i,T−1), θi,T )ψ(θj,T |θj,T−1)dθj,T .

Earlier Periods (1, .., T − 1). In earlier periods, i may choose not to set a static best

response price in order to affect j’s belief about its type. The equilibrium concept that we

use is symmetric Markov Perfect Bayesian Equilibrium (MPBE) (Toxvaerd (2008), Roddie

(2012)). An MPBE specifies period-specific pricing strategies for each firm i as a function

of its current type and beliefs, where the strategy maximizes i’s payoff given the current and

future pricing strategy of its rivals. It also specifies how beliefs are formed given observed

pricing histories, and, on the equilibrium path, beliefs should be consistent with Bayes Rule

and equilibrium pricing strategies. If there are multiple rivals, they should have consistent

beliefs given an observed history. While only current types and prices are directly payoff-

7This notation reflects the fact that we are assuming that player j used an equilibrium strategy in T − 1
that revealed its type (θj,T−1), but we are allowing for the possibility that firm i may have deviated so that
j’s beliefs about i’s previous type are incorrect.
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relevant, history can matter in this Markovian equilibrium because of how it affects beliefs.

We will only consider fully separating MPBEs where, in every period, a firm’s equilibrium

pricing strategy perfectly reveals its current type, and j’s belief about i’s current type will

come from inverting i’s pricing function.

Characterization of Separating Pricing Functions in Period t < T . We character-

ize fully separating pricing functions by defining a firm i’s period-specific “signaling payoff

function”, Πi,t(θi,t, θ̂
j
i,t, pi,t), following Mailath (1989) who shows how to apply the results in

Mailath (1987) to this problem. Πi,t is the present discounted value (PDV) of firm i’s ex-

pected current and future payoffs when its current type is θi,t, it sets price pi,t and j believes,

at the end of period t, that i has type θ̂ji,t. Π
i,t is assumed to be continuous and at least twice

differentiable in its arguments. It is implicitly conditional on (i) j’s period t pricing strategy,

which will depend on j’s beliefs about t− 1 types, and (ii) both players’ strategies in future

periods. As j’s end-of-period t belief about i’s type enters as a separate argument, pi,t only

affects Πi,t through period t profits. Given conditions on Πi,t that will be listed in a moment,

the fully separating best response function of firm i, which is also implicitly conditioned on

j’s current pricing strategy and beliefs about previous types, can be uniquely characterized

as follows (see Appendix C for a restatement of the Mailath (1987) theorems): i’s pricing

function will be the solution to a differential equation where

∂p∗i,t(θi,t)

∂θi,t
= −

Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

) > 0, (1)
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and a boundary condition. The subscript n in Πi,t
n denotes the partial derivative of Πi,t with

respect to the nth argument. Assuming that lower types want to set lower prices (e.g., a

type corresponds to the firm’s marginal cost), the boundary condition will be that p∗i,t(θi) is

the solution to

Πi,t
3

(
θi, θ̂

j
i,t, pi,t

)
= 0, (2)

i.e., the lowest type’s price maximizes its static expected profits given j’s pricing policy.

The numerator in (1) is i’s marginal future benefit from raising j’s belief about θi,t, and the

denominator is the marginal effect of a price increase on i’s current profit. For prices above

a static best response price, the denominator will be negative, and the pricing function will

slope upwards in the firm’s type.

This characterization of a separating best response will be valid under four conditions on

Πi,t, in addition to continuity and differentiability,

Condition 1 Shape of Πi,t with respect to pi,t. For any (θi,t, θ̂
j
i,t), Π

i,t
(
θi,t, θ̂

j
i,t, pi,t

)
has

a unique optimum in pi,t, and, for all θi,t, for any pi,t where Πi,t
33

(
θi,t, θ̂

j
i,t, pi,t

)
> 0, there is

some k > 0 such that
∣∣∣Πi,t

3

(
θi,t, θ̂

j
i,t, pi,t

)∣∣∣ > k.

Condition 2 Type Monotonicity. Πi,t
13

(
θi,t, θ̂

j
i,t, pi,t

)
̸= 0 for all (θi,t, θ̂

j
i,t, pi,t).

Condition 3 Belief Monotonicity. Πi,t
2

(
θi,t, θ̂

j
i,t, pi,t

)
is either > 0 for all (θi,t, θ̂

j
i,t) or

< 0 for all (θi,t, θ̂
j
i,t).

Condition 4 Single-Crossing.
Πi,t

3

(
θi,t,θ̂

j
i,t,pi,t

)
Πi,t

2

(
θi,t,θ̂

j
i,t,pi,t

) is a monotone function of θi,t for all θ̂ji,t

and for (θi,t, pi,t) in the graph of p∗i,t(θi,t, θj,t−1).
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To interpret these conditions, assume that types correspond to marginal costs. The first

condition will be satisfied if, for any marginal cost and distribution of prices that the rival

may set, a firm’s expected current period profit is quasi-concave in its own price. This will

hold for common forms of differentiated product demand such as the multinomial and nested

logit models. Type monotonicity requires that, when a firm increases its price, the profit

that it loses will be lower if it has higher marginal costs. This will hold for constant marginal

costs. Belief monotonicity requires that a firm’s expected future profits should increase when

rivals believe that it has a higher cost, holding its actual cost fixed. This condition may fail

(Appendix B.1.2 analyzes a two-type example). Single-crossing requires that a firm with a

higher marginal cost should always be more willing to raise its price, reducing its current

profits, in order to raise its rivals’ beliefs about its marginal cost. This condition can also fail.

For completeness, we also need to define beliefs that a firm will have if the rival sets a price

that is outside the range of the pricing function (i.e., a price that is not on the equilibrium

path). When types correspond to marginal costs, we will assume that when a firm sets a

price below (above) the lowest (highest) price in the range of the pricing function, it will be

inferred to have the lowest (highest) possible cost type.

Existence and Uniqueness of a Fully Separating Equilibrium. These conditions

guarantee the existence and uniqueness of fully separating best responses with continuous

types, but they are not sufficient for the existence or uniqueness of a fully separating MPBE

in the whole game. When marginal costs are private information, Mailath (1989) does prove

existence and uniqueness in a two-period duopoly game with linear demand. Appendix C

extends this result to a multi-period finite horizon game, assuming that the marginal cost
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interval (θ−θ) is small enough so that a single-crossing condition holds when prices rise. No

proofs are available in infinite horizon games. In our empirical application, we will assume

nonlinear demand and, to reduce the computational burden, an infinite horizon. We will

therefore proceed without proofs of existence or uniqueness. Appendix A details how we

compute equilibrium strategies, and verify belief monotonicity and single-crossing as part of

the algorithm. We will discuss examples where we cannot find any separating equilibrium

below. However, we have only ever found a single equilibrium in finite horizon games and

infinite horizon games with continuous types.

In a two-type model, even best responses may not be unique. Our two-type examples

therefore apply, during computation, a refinement by solving for the strategies that achieve

separation at the lowest cost to the signaling firm. This is consistent with the type of

“intuitive criterion” (Cho and Kreps (1987)) refinement that has been widely used in one-

sided signaling models with two types. However, even with the refinement, we have found

examples of multiplicity in infinite horizon games with two types, so our results may be

dependent on the algorithm that we use.8

3 Examples

This section uses examples to illustrate the equilibrium effects of signaling, and how equilib-

rium prices change with the number of firms, mergers, discount factors and asymmetries.

8In infinite horizon examples where we have found multiplicity, our computational algorithm appears to
consistently identify an equilibrium that is the limit, as the number of periods grows, of the equilibrium in
the early periods of a finite-horizon game.
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3.1 Equilibrium Strategies in a Finite Horizon, Continuous-Type
Duopoly Example.

Specification. Two ex-ante symmetric single-product firms play a finite horizon game

with T = 25 periods. There is nested logit demand, with both products in one nest, and

the outside good in its own nest. Consumer c’s indirect utility from buying product i is

ui,c = 5 − 0.1pi + σνc + (1 − σ)εi,c where pi is the dollar price, εi,c is a draw from a Type I

extreme value distribution, σ = 0.25, and νc is an appropriately distributed draw for c’s nest

preferences. For the outside good, u0,c = ε0,c. We will set market size equal to 1, so that our

welfare numbers have a “per-potential consumer” interpretation.

Firm marginal costs are private information. For each firm, ci,t lies in the interval [c, c] =

[$8, $8.05] and evolves according to an independent and exogenous truncated AR(1) process

ci,t = ρci,t−1 + (1− ρ)
c+ c

2
+ ηi,t, (3)

where ρ = 0.8 and ηi,t ∼ TRN(0, σ2
c , c − ρci,t−1 − (1 − ρ) c+c

2
, c − ρci,t−1 − (1 − ρ) c+c

2
).

σc = $0.025. TRN denotes a truncated normal distribution, whose arguments are the mean

and the variance of the untruncated distribution, and the lower and upper truncation points.

We note two features of this parameterization. First, marginal costs are restricted to a

narrow range (diverging by less than 0.32% from mean value) and the probability that a

firm will switch from a relatively high cost to a relatively low cost within the range between

periods is quite high (the probability that a firm with cost c has a cost less than c+c
2

in the

next period is 0.32). This limits what can be inferred about a firm’s next period marginal

cost from any signal. Even though this limits signaling incentives, we find large equilibrium
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Table 1: Equilibrium Prices and Welfare in the Duopoly Game

Expected Welfare Measures
Per Market Size Unit

Nature of Mean Std. Dev. Cons. Producer Total
Period Equilibrium Price Price Surplus Surplus Welfare
T-24 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-13 MPBE $24.76 $0.47 $30.91 $15.96 $46.87
T-10 MPBE $24.75 $0.47 $30.92 $15.95 $46.87
T-7 MPBE $24.68 $0.45 $30.98 $15.89 $46.88
T-4 MPBE $24.25 $0.36 $31.40 $15.51 $46.91
T-2 MPBE $23.38 $0.17 $32.23 $14.74 $46.97
T-1 MPBE $22.88 $0.06 $32.71 $14.29 $47.00
T BNE $22.62 $0.01 $32.96 $14.05 $47.01

Infinite Stationary $24.76 $0.47 $30.91 $15.96 $46.87
Horizon MPBE

Notes: except for the last row, all prices are based on equilibrium strategies in a
finite horizon model with parameters described in the text. The last line reports
results for the stationary strategies in an infinite horizon model with the same pa-
rameters.

effects. Second, the assumed demand parameters imply high margins and limited diversion

to the outside good in both static and dynamic equilibria. We will discuss how these features

contribute to the existence of a fully separating equilibrium with large price effects below.

Equilibrium Outcomes and Strategies. Table 1 shows expected price levels, the stan-

dard deviation of prices and various welfare measures when we simulate data using equi-

librium strategies in different periods of the finite horizon game. For comparison, expected

joint-profit maximizing prices and static Nash equilibrium prices under CI (given average

costs) are $45.20 and $22.62, with small standard deviations ($0.007 and $0.011). Signaling

MPBE prices are higher and more volatile than Nash prices in periods before T−1, although

prices never approach joint-profit maximizing levels.

Figure 1(a) shows four static BNE period T pricing functions for firm 2, for different
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Figure 1: Period T and T − 1 Pricing Strategies in the Finite Horizon, Continuous Type
Signaling Game

values of firm 1’s period T −1 marginal cost (c1,T−1), assuming that both firms know/believe

that c2,T−1 = $8. Firm 2’s price increases with c1,T−1 as firm 1’s expected period T price rises

with c1,T−1. However, the variation in firm 1’s prior cost affects firm 2’s price by less than

one cent, and, averaging across all possible cost realizations, average prices and welfare are

almost identical to outcomes with CI.9 Therefore the existence of asymmetric information

in the static period T game does not generate quantitatively interesting effects.

In period T −1 a firm has incentive to signal to affect its rival’s period T price. Assuming

9Expected producer and consumer surplus differ by less than $0.0001 across these models.
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Figure 2: Expected T − 1 Period Profit Function: c1,T−1 = $8.025 and c1,T−2 = c2,T−2 = $8
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Notes: the profit function is drawn “per potential consumer” for a firm assumed to have a marginal

cost of $8.025, and with a rival using the static BNE pricing strategy when both firms’ previous

period marginal costs were $8.

both firms’ period T − 2 costs were $8, Figure 1(b) shows firm 1’s signaling pricing function

(found by solving the differential equation (1) given the boundary condition (2)) if it expected

that firm 2 was using its period T strategy. We reproduce the period T pricing strategy for

comparison. The pricing functions intersect for c1,T−1 = $8, but signaling may lead firm 1

to raise its price by as much as 20 cents for higher costs. At first blush, this large increase

may seem surprising given that we know a signal can only affect firm 2’s T price by a small

amount. However, assumed demand implies that firm 1’s profit function, shown in Figure

2, is sufficiently flat that, if c1,T−1 = $8.025, the expected reduction in T − 1 profit from

using a signaling price of $22.76, rather than the statically optimal price, is only $0.00070

per consumer, which is less than the expected period T gain ($0.00079) from being viewed

as a firm with c1,T−1 = $8.025 rather than c1,T−1 = $8.0001, which would be firm 2’s belief

if firm 1 set the static price.

Figure 1(b) assumed that firm 2 was using its period T strategy with no signaling.
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Figure 3: Equilibrium Pricing Functions for Firm 1 in the Infinite Horizon Game and Various
Periods of the Finite Horizon Game.
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Notes: all functions drawn assuming that firm 1’s perceived marginal cost in the previous period

was $8.

Figure 1(c) shows firm 2’s best signaling response when firm 1 uses the strategy in Figure

1(b) (repeated in the new figure as a comparison). As firm 1’s expected price has increased,

firm 2’s static best response pricing function shifts upwards. Of course, this positive feedback

will cause firm 1’s pricing function to rise as well. Figure 1(d) shows the equilibrium period

T −1 pricing functions. The increase in the slope and the dispersion of the pricing functions

means that period T − 1 prices will be higher and more volatile than period T prices.

The increased vertical spread also means that period T − 1 prices are more sensitive to

perceived period T−2 costs which increases period T−2 signaling incentives. Figure 3 shows

a selection of equilibrium pricing functions for period T − 2 and earlier periods. The pricing
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functions become more spread out and the level of prices increases, although by successively

smaller amounts, in earlier periods. Further back than period T − 15 equilibrium pricing

functions and average prices barely change. The figure also plots the stationary pricing

strategies that we compute for an infinite horizon game with the same parameters. They are

indistinguishable from the strategies in the early periods of the finite horizon game.10

3.2 Cost Assumptions, Signaling Incentives and the Existence of
Separating Equilibria.

As noted, signaling incentives in the previous example are relatively weak because of the

limited correlation in marginal costs across periods. Increasing the AR(1) parameter or

c − c, or reducing σc, tends to increase signaling incentives and raise equilibrium prices.

However, when price increases are too large, the conditions for characterizing best responses

can fail and we may not be able to find a separating equilibrium.

The first six columns of Table 2 show, for different periods, the baseline average prices and

average prices when signaling incentives are strengthened. Small parameter changes raise

prices, but larger changes cause failures in our ability to find best response pricing functions.

Pooling or partial pooling equilibria may exist, but we do not know how to characterize

them. Appendix B.1.2 uses a two-type example to explain the failure of the conditions,

including belief monotonicity. The final column illustrates that we can sustain separating

equilibria if c − c and σc increase simultaneously, leaving the probability that a cost goes

from one extreme of the support to the opposite half of the support unchanged at 0.32. This

is relevant for our application, where the calibrated values of c − c and σc are much higher

10We have consistently found this convergence except in cases when the conditions required for separation
are violated or are very close to being violated in which case the infinite horizon strategies may not converge.
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Table 2: Equilibrium Pricing in a Finite Horizon Game with Alternative Cost Specifications

Reduce Expand Range

Baseline Expand Range Std. Deviation & Increase Std. Dev.

[c, c] ($) [8,8.05] [8,8.075] [8,8.15] [8,8.3] [8,8.05] [8,8.05] [8,8.50]
σc ($) 0.025 0.025 0.025 0.025 0.02 0.01 0.25

T-24 $24.76 $26.51 - - $25.71 - $24.90
T-10 $24.75 $26.59 - - $25.70 - $24.89
T-9 $24.74 $26.59 fails - $25.69 fails $24.89
T-8 $24.72 $26.57 $28.48 - $25.66 $28.58 $24.89
T-7 $24.68 $26.50 $29.17 fails $25.60 $28.76 $24.87
T-6 $24.61 $26.37 $29.35 $30.40 $25.49 $28.65 $24.85
T-1 $22.88 $23.05 $23.42 $23.93 $22.93 $23.05 $23.55
T $22.62 $22.63 $22.67 $22.74 $22.62 $22.62 $22.84

∞-Horizon $24.76 $26.50 fails fails $25.71 fails $24.90

Notes: values in all but the last line are based on the duopoly, continuous type, finite horizon model with
demand parameters described in the text (cost parameters indicated in the table). The last line reports
results for the stationary strategies in the infinite horizon model with the same parameters. “Fails” indi-
cates that the belief monotonicity or single-crossing conditions fail so that we cannot calculate signaling
best response pricing functions.

than in our baseline example.

Table 2 assumes that the cost parameters are the same for both firms. We have also solved

examples where duopolists have different cost parameters, finding that changes in average

prices typically depend on the parameters of the firm that has the narrowest cost interval

or the least correlated costs. For example, holding our other parameters fixed, when both

firms have ranges [8, 8.05] average equilibrium prices with signaling are $24.76. If we drop

the range of firm 2 to [8,8.01] then the average prices of both firms drop to close to $22.69

(the difference between their average prices is less than one cent), approximately 10 cents

above complete information prices. These prices are almost the same as when both firms

have intervals of [8,8.01]. We will return to this result in the context of cost pass-through in

our empirical application.
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3.3 Effects of the Number of Firms, Discount Factors and Asym-
metries on Equilibrium Prices.

We also investigate how the difference between complete information and signaling prices

varies with the number of firms and demand asymmetries.

Number of Firms. Figure 4(a) shows the average prices predicted by our signaling model

and a CI model as we vary the number of firms from 2 to 7. We use the two-type model, and

each firm has a single product. We assume the same demand system as previously. Each

firm’s marginal cost state is either 8 or 8.05, and changes between periods with probability

0.3. We present results using a finite horizon model, solving backwards for at least 30 periods,

adding additional periods until the strategies converge.11 This guarantees that there will be a

unique equilibrium in the CI game. We test whether our results are sensitive to the assumed

discount factor by considering four lower values (0.5, 0.8, 0.9 and 0.95) as well as 0.99.

When N = 1, static monopoly pricing is always optimal so all specifications predict

identical prices. When N = 2, average prices with signaling are 15.3% above CI Nash levels

when β = 0.99, and 9.4% higher when β = 0.8, illustrating how discount factors consistent

with annual, or even less frequent, pricing can generate significant effects. As N increases,

signaling effects diminish, as an individual firm’s incentive to signal is reduced when its price

will have smaller effects on the future pricing choices of other firms, and the cost of signaling

is increased as the firm’s demand become more elastic. However, at least until N = 6, price

effects are not trivial: for example, when N = 4 and β = 0.95, signaling prices are 2% higher

than CI prices.12

11Convergence is defined as a maximum difference in the pricing strategies across periods of less than 1e-4.
12We have also calculated average joint-profit maximizing prices under CI, and the critical discount factor
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Figure 4: Equilibrium Average Prices with Different Numbers of Firms and Alternative
Discount Factors in a Two-Type Model, and the Effect of Demand-Side Asymmetries with
Three Firms.

(a) Average Prices with Symmetric Single-Product Firms.

(b) Increase in Share-Weighted Average Prices Relative to CI Nash in a Three Firm Model with
Demand Asymmetries.
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Demand Asymmetries. We use a three firm, two-type model to compare signaling and

CI Nash prices when firms have asymmetric demand. We keep our previous assumptions

about costs. The nesting and price demand parameters are unchanged, but we choose the

firm-specific indirect utility intercepts so that, with average marginal costs for each firm and

static CI Nash prices, the three firms have specific shares of sales and 97.5% of potential

consumers make a purchase, implying limited substitution to the outside good.

Figure 4(b) shows the increase in the share-weighted average price relative to CI Nash,

with the circle areas indicating the magnitudes that are also written in the figure, where

the share of the largest firm and the split of the shares of the other firms are represented

on the axes. The price increase in the symmetric 3-firm model is 4.6% (bottom-left circle).

The percentage increases are largest when the industry is closest to an effective duopoly, but

they are significant in other cases as well. For example, when the CI shares of total sales are

{0.68, 0.24, 0.08}, average signaling prices are 5.3% higher than average CI Nash prices. In

this example, it is the firm with the second largest share that increases its average price the

most, in both dollar and percentage terms (10.0%).

3.4 Mergers and Merger Analysis.

The previous results show that signaling leads to larger price increases when there are fewer

firms. We therefore consider the effects of horizontal mergers in more detail, also motivated

by how the merger simulation and pricing pressure methods used by agencies assume CI

Nash pricing.

that would sustain collusion with Nash reversion trigger strategies if the game had an infinite horizon. For
example, with N = 4, joint-profit maximizing prices of over 49 could be sustained if β > 0.62.
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Figure 5: Effects of an Unanticipated Merger in a Two-Type Model.

(a) Increases in Average Prices with Symmetric Single-Product Firms Before and After the Merger.

(b) Increases in Average Prices in a Four Firm Model where Merged Firm Has Two Products after
the Merger and Benefits from the CI CMCR. Missing values indicate that a separating equilibrium
was not found before or after the merger.
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Figure 5(a) reports the increase in average firm prices after an unanticipated merger of

two firms which eliminates a product without generating synergies, using the same symmetric

firm specifications as Figure 4(a). As signaling has no effect on monopoly prices, CI Nash

predicts the largest price increase under a merger to monopoly. Outside of this case, the

signaling model predicts larger absolute post-merger price increases in all cases, and larger

percentage price increases when the discount factor is large enough.

It is more common to assume that a merged firm will continue to sell both products

after a merger, and that synergies are possible. As tractability requires that the merged

firm’s products will have identical prices and marginal costs after a merger, we will consider

mergers between symmetric single product firms, but allows rivals to be asymmetric. We

will also assume that the width of the cost interval and the evolution process for costs remain

the same, even if marginal cost levels change due to a synergy.

Figure 5(b) shows how signaling increases share-weighted average prices (across all firms)

after mergers in asymmetric 4-firm industries. The pre-merger model extends the example

used for Figure 4(b) to an additional firm. The x-axis indicates the combined (CI Nash)

market share of the two symmetric merging firms before the merger (so 0.5 means that each

firm makes 25% of sales), while the y-axis shows the split of the remaining CI sales between

the two remaining firms. We assume that the merged firm’s average marginal costs decrease

by the Compensating Marginal Cost Reduction (CMCR) implied by a CI Nash model, so

that, under that model, equilibrium prices would not change. The price increases in the

figure would therefore be unanticipated by an agency using a CI Nash analysis.

After a merger in a symmetric four-firm industry, signaling increases prices by 3.13%.

The size of the price increase is much larger when one of the non-merging firms has a much
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Table 3: Post-Merger Prices and Required Synergies in an Infinite Horizon Continuous-Type
Model. Firms are symmetric before the merger, and the merged firm sells two products after
the merger.

4-to-3 Merger 3-to-2 Merger

Pre-Merger Average Prices $18.25 $19.79

Post-Merger Average Price of Merged $21.53 (+18.0%) $27.18 (+37.3%)
Firm if No Marginal Cost Synergy

Post-Merger Average Price of Non- $19.12 (+4.8%) $23.59 (+19.2%)
Merging Firm if No Marginal Cost Synergy

CI CMCR $4.95 $10.08

Merged’s Firm Post-Merger Average Price with $18.85 (+3.2%) $23.00 (+16.2%)
CI CMCR Synergy in Signaling Equilibrium

Marginal Cost Reduction Required to Keep Merged $5.76 $19.94
Firm’s Average Price from Rising in Signaling Equilibrium

Notes: parameterization described in the text. Note that the CI CMCR is the marginal cost reduction that an
analyst would compute using the true demand system, observed (signaling) pre-merger signaling prices and a
CI Nash assumption.

larger market share (the upper rows in the figure). The intuition is that, when the prices of

the merging products become more sensitive to both the merged firm’s costs and the prices

set by rivals, the prices of a dominant rival will also become significantly more sensitive,

creating a feedback that can lead to substantial equilibrium price effects. A feature of our

model is that, after a merger with a synergy, the prices of non-merging firms can rise as

much or more than those of the merging firms, which will not happen in a static CI Nash

model where the static best response functions have slopes less than one. For example,

if pre-merger sale shares are {0.325,0.325,0.33,0.02}, the equilibrium average prices of the

merging products rise by 10.6%, and the large rival increases its average price by 12.9%. The

small rival’s average price increases by 1%.

These patterns also imply that, if firms use signaling strategies, synergies may need to
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be much larger than the CMCRs to prevent average prices from rising.13 We illustrate by

extending our infinite horizon continuous-type model to allow for up to four firms, with our

previous demand and cost assumptions. Firms are symmetric before the merger, but, after

the merger, the merged firm has two products. Table 3 shows the effects of 4-to-3 and 3-to-2

mergers. With no synergy, either merger leads to both the merging firms and the non-merging

firms increasing their prices substantially. Very large synergies are required to prevent the

merged firm’s price from rising. For a 3-to-2 merger, the merged firm’s average marginal

cost would have to fall from $8.025 to -$11.915, i.e., an essentially impossible reduction.

3.5 Additional Examples.

Appendix B describes additional examples. For instance, Appendix B.1.1 uses the two-type

duopoly model to examine the relationship between the existence of separating equilibria,

the effects of signaling on prices, the serial correlation of costs and the extent to which, when

a firm’s price rises, demand is diverted to the outside good. The results suggest that the

degree of diversion to the outside good is critical to both the existence of signaling equilibria

and the magnitude of signaling effects.

Appendix B.2 shows that price effects can also be substantial when each firm’s marginal

cost is fixed and known, but some other state variable that affects payoffs is unobserved and

serially correlated (e.g., a feature of demand or the weights that a manager places on firm

profits and revenues). Our results therefore extend beyond the case of uncertain marginal

costs.

13In a CI Nash model, CMCR synergies will keep the prices of all firms at their pre-merger levels. With
signaling, even if a synergy keeps the average prices of the merged firm at their pre-merger level, the prices
of the non-merging rivals may increase. In the example we consider here, we just focus on the average prices
of the merged firm.
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4 Empirical Application: The MillerCoors Joint Ven-

ture

In this section, we test whether our model can explain changes in price levels, and price

dynamics in the U.S. beer industry around the time of the 2008 MC JV, which was an

effective merger of the second- and third-largest US brewers.14 Section 4.1 motivates our

analysis of this setting, and Section 4.2 explains our calibration of our model, and a CI

alternative, using only pre-JV data. Section 4.3 compares our calibrated model’s predictions

to changes observed after the JV. In order to keep our discussion focused on our model,

details of the data, which is the same as used by MW, demand estimation and additional

analysis of CI collusive supply models are contained in Appendix D.

4.1 Motivation.

We choose the MC JV as our application for two broad reasons. First, key features are

consistent with the assumptions that we have to make for tractability. Specifically, we

model competition between AB, Miller and Coors, as firms selling single products before the

JV, with Miller and Coors having symmetric demands, and we assume Miller and Coors have

identical costs and prices after the JV. These three firms dominated the “subpremium” and

“premium” segments of the beer industry, and there is no empirical evidence that post-JV

retail price increases for the domestic brands caused significant substitution to higher-priced

imported or craft beer alternatives (Appendices D.3 and D.5). The leading merging brands,

Miller Lite (ML) and Coors Light (CL), had very similar national market shares and retail

14Anheuser-Busch was purchased by InBev in 2008. Throughout this section and the Appendices, we will
use AB to refer to Anheuser-Busch before 2008 and Anheuser-Busch InBev afterwards, and we will assume
that this transaction had no effect on AB’s pricing incentives.
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Figure 6: Average Prices for Flagship Brand 12-Packs in Three Markets. Panels (a)-(c) show
nominal weekly average prices for 48 months around the JV, excluding sales at temporary
price reductions.

prices before the JV (Appendix D.3), and, while the largest brewers sell many products, their

retail prices tend to be highly correlated (Appendix D.6). After the JV, MC produced ML

and CL in the same breweries, and, in most markets, their prices were more correlated than

before the JV, as can be seen in Figure 6(a)-(c) (see Appendices D.6 and D.7 for alternative

measures).

Second, there are several features of the price data that our model can potentially explain,

some of which are inconsistent with the tacit collusion models that have been applied to this

data. The first feature, identified by MW, is the similar increase in the real prices of all

domestic brands, including AB’s, after the MC JV despite plausible efficiencies (Ashenfelter,

Hosken andWeinberg (2015)) that a CI analysis would have expected to offset price increases.

Regressions in Appendix D.4 quantify these price increases to lie between 40 cents and a
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dollar per 12-pack, or 3%-6%, depending on the specification.15 As discussed in Section 3.4,

our model can explain why non-merging firms increase their prices as much, or more, than

non-merging firms. Of course, a model of collusion could also explain this fact, but, as we

discuss below, there are features of the data that the specific collusion models considered in

the literature cannot explain.

The second and third features are serial correlation and volatility in average retail prices

both before and after the JV. Figure 6(a)-(c) show monthly average nominal retail prices

(calculated as dollar sales divided by units sold) for Bud Light (BL), ML and CL 12-packs

in two local markets and nationally. We present nominal prices so that the picture is not

distorted by the drop in the CPI deflator (footnote 15). Sales at prices indicated as temporary

price reductions are excluded when calculating the series, as these may create volatility

that does not reflect changes in wholesale prices. Appendix D.7 presents alternative price

measures. Appendix Figure D.6 shows that the marginal cost residuals implied by MW’s

preferred CI supply model are also volatile and serially correlated. In our model, some

volatility in marginal costs can lead to significantly greater volatility in prices, as well as an

increase in price levels and volatility after the JV. In contrast, tacit collusion models tend

to imply price rigidity (Athey, Bagwell and Sanchirico (2004)).

The fourth feature is an apparent change in the rate of pass-through of transportation

costs after the JV. Suppose that distribution costs equal trucking distance multiplied by

a “per mile” measure of distribution network efficiency, reflecting, for example, average

capacity utilization in each truck, which is private information and evolves over time. Our

15The interpretation of this price increase is potentially complicated by a fall in the CPI-U deflator,
from 220.0 in July 2008 to 210.2 in December 2008, that occurred simultaneously with the merger being
consummated.
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model would predict that, after a merger that strengthens signaling incentives, the prices

of all signaling firms may increase more in markets that are located further from breweries.

This signaling effect could counteract efficiencies created by the JV reducing transportation

distances for some markets.

Table 4 reports price regressions that we use to measure changes in pass-through. The

sample, which includes 13 brands made by domestic brewers and two importers, Grupo

Modelo and Heineken, is the same as the one used in MW’s Tables II and III, except that we

include additional pack sizes (18- and 36-packs, which account for more than 20% of domestic

brewer sales by volume) and we exclude the June 2008-May 2009 period, which MW exclude

in their Table II, in all regressions. Observations are at the brand-size-market-month level

and the dependent variable is the real price (in dollars) per 12-pack equivalent, and, for

comparison purposes, it is useful to keep in mind that the JV increased real domestic prices

by 40 cents to one dollar per 12-pack. Appendix D.10 shows that the results are similar

using a log price specification. All specifications include date fixed effects, and various

combinations of product and market fixed effects, but measure distances in different ways.

The first column estimates how the brewery-to-market trucking distance, measured in

thousands of miles, affects retail prices before and after the JV, controlling for pre-/post-JV

product (i.e., brand-size) fixed effects, market fixed effects and date fixed effects. We estimate

pre- and post-JV distance coefficients for imported products and each domestic brewer. The

coefficients show that domestic prices were significantly more sensitive to distance after

the JV, while this is not the case for imported products. The coefficients are also quite

large given that, for example, the average post-JV distance for Miller is 316 miles with

standard deviation 269 miles, and a range of over 1,000 miles. As there is little evidence
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Table 4: Distance Pass-Through Regressions: Real Price Per 12-Pack for all Pack Sizes

(1) (2) (3) (4) (5) (6) (7)
Distance Own Own × Own Min. - Own Min.
Measure Diesel Domestic Domestic

Distance Measure ×
AB -0.319 -0.059

(0.180) (0.068)
Imports 0.470 0.109

(0.185) (0.043)
Coors 0.194 0.109

(0.067) (0.021)
Miller -0.143 0.008

(0.102) (0.038)
Post-JV × Own Distance ×
AB 0.629 0.197 0.569 0.868 0.290 0.635

(0.314) (0.102) (0.313) (0.232) (0.304) (0.275)
Imports -0.198 -0.064 -0.132 0.305 -0.221 0.076

(0.189) (0.042) (0.160) (0.249) (0.168) (0.277)
Coors 0.560 0.156 0.718 0.789 0.611 0.538

(0.144) (0.047) (0.134) (0.200) (0.133) (0.246)
Miller 0.796 0.233 0.785 0.905 0.686 0.662

(0.149) (0.042) (0.152) (0.228) (0.137) (0.266)
Post-JV ×
Reduction Coors Distance -0.377 -0.443 -0.360

(0.201) (0.196) (0.212)
Mkt HHI Increase Due to JV 2.327 2.330 2.147

(2.731) (2.652) (2.810)
Post-JV × Domestic ×
Reduction Coors Distance -0.078 0.126 0.047

(0.133) (0.137) (0.144)
Mkt HHI Increase Due to JV 3.019 2.633 1.810

(2.554) (2.401) (2.179)

Fixed Effects Pre/Post× Pre/Post× Product× Product× Product× Product× Product×
Product Product Market Market Market Market Market
Market Market Pre/Post× Pre/Post× Pre/Post× Pre/Post × Pre/Post×

Product Product Product Product Product

Observations 191,909 191,909 191,909 191,909 191,909 191,909 191,909
R-squared 0.927 0.926 0.957 0.957 0.957 0.957 0.957

Notes: standard errors, clustered on the market, in parentheses. See text for discussion of the sample. Date
fixed effects in all specifications.
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of significant demand substitution to imported products, we view the imported brands as

providing a comparison group whose signaling incentives may not have changed after the

JV. We interpret the coefficients as being consistent with the domestic firms engaging in

signaling about network efficiency, with incentives to signal becoming stronger after the JV.

In column (2), we use distance multiplied by the real price of diesel as the distance

measure. Average real diesel prices in the two years before and after the JV were very

similar. While the scale of the coefficients changes, the pattern remains the same. The

remaining columns use distance-only based measures, although the results are qualitatively

similar using the distance×diesel price variable.

Column (3) includes product-market fixed effects, and the post-JV distance coefficients

should be interpreted as reflecting how post-JV price increases vary with trucking distances.16

Even though there are no distance changes for AB products after the JV, and for only a

small number of markets for Miller products, the coefficients imply that the size of price

increases are related to trucking distances for these firms, and not for imports.

As noted in Section 3.2, price increases in the signaling model are often most sensitive to

the smallest range of cost uncertainty for the firms playing the game. Column (4) therefore

uses the smallest trucking distance for the domestic brewers as the distance measure. The

magnitude of the AB coefficient increases in size and significance.

MW estimate regressions where post-JV price increases depend on the JV-induced truck-

ing distance reduction for Coors products and the increase in market HHI (measured between

0 and 1). The values of the HHI are higher in our analysis because we include additional

16In the MW data there are handful of small distance changes for markets before the JV, and the post-JV
distance coefficients are unchanged if additional pre-JV distance coefficients are estimated.
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pack sizes that are primarily sold by the domestic brewers. Specification (5) show that these

variables are correlated with price changes for all products, although these effects are not

systematically different for domestic and imported products. Specifications (6) and (7) re-

peat specifications (3) and (4), but including these variables. Five out of six domestic own

and minimum distance coefficients continue to be significant.

One might ask whether the increased sensitivity of pricing to own distance could be ex-

plained by a model of tacit collusion, as well as our model. For instance, more collusive

conduct might potentially change the rate of cost pass-through. We investigate this possi-

bility by taking the marginal costs implied by MW’s supply-side conduct model estimates

(specifically their monthly RCNL-1 model in Table VI), and regressing them on post-JV dis-

tance measures for each brewer with brand-size-market, brand-size-post JV and date fixed

effects. The specification is therefore similar to Table 4 col. (3), except that the dependent

variable is implied marginal costs (in real dollars), rather than real retail prices. If changes

in conduct determined the change in distance pass-through then the post-JV×distance co-

efficients should now be zero. Instead, the Miller, Coors and AB coefficients are 0.433 (s.e.

0.171), 1.414 (0.466) and 0.430 (0.394) respectively. Therefore, MW’s estimated change in

conduct is not sufficient to explain the change in pass-through.

One can also show that other features of the MW conduct model and MSW’s price

leadership model can be rejected. For example, Appendix D.12 extends MW’s supply-side

analysis to provide evidence against MW’s assumption of Nash pricing before the MC JV and

MSW’s assumption of incentive-compatible domestic supermarkups. Of course, a different

collusive model might explain the changes in pass-through and the changes in price dynamics

that we describe below. One might also argue that only a collusive model is consistent with
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remarks, cited by the Department of Justice (DOJ), in AB’s Conduct Plan that describe its

pricing as aiming to create “consistent and transparent competitive response” and to achieve

the “highest level of followership.”17 We do not agree with this interpretation. In our model,

price signals are motivated by a desire to affect rivals’ future prices, and signaling relies on

rivals interpreting and responding to signals appropriately. It is notable that there is no

mention of the Conduct Plan discussing the types of threatened punishments that collusive

models rely on.

4.2 Calibration of the Dynamic Asymmetric Information Model.

We calibrate an infinite horizon, continuous marginal cost three-firm/product version of our

model to match several moments in the pre-JV data. We also calibrate a CI model that

assumes that firms use static Nash pricing strategies. We limit the computational burden by

treating local markets as different repetitions of the same game, rather than as games with

different cost and demand primitives.18

Products. We model the pricing of three brands, which we label BL, ML and CL. We cali-

brate the cost parameters to match the prices and price dynamics of these flagship products,

but the prices of brands within a firm’s portfolio (e.g., Budweiser and BL) are highly corre-

lated (Appendix D.6) so one can interpret the products are representing domestic brewers’

portfolios. Products of other brewers are included in the outside good.19

17See https://www.justice.gov/atr/case-document/file/486606/download.
18Computationally light two-step approaches, which are often used to estimate dynamic games, require

that all serially-correlated state variables, which in our setting would include beliefs, are observed by the
researcher.

19In an earlier version of this paper we calibrated a model that included imports as a non-signaling fringe
in a separate nest. The calibrated model predicted that their prices changed by around 1 cent when the JV
raised domestic prices by 70 cents or more.
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Demand. We assume static, time-invariant nested logit demand, with the three brands

in the same nest. For our baseline specification, the four parameters (the nesting and price

parameters, and the mean utility intercepts of BL and ML/CL) are chosen so that, at average

real pre-JV prices ($10.09 for BL and $9.95 for ML/CL), the market shares of BL and ML/CL

are 28% and 14%, the average own price elasticity is -3 and, when a brand’s price increases,

85% of the demand that it loses is diverted to the two remaining brands.20 The implied

nesting and price parameters are 0.772 and −0.098, and the BL and ML/CL mean utilities

are 1.044 and 0.863 respectively. We will also calibrate specifications with alternative price

elasticities and diversions, but Appendix D.11 presents estimates from richer demand models

that are consistent with our assumed baseline values.

Marginal Costs. The marginal costs of brand i, ci,t, are assumed to lie on an interval

[ci, ci + c′] and to evolve according to an AR(1) process

ci,t = ρci,t−1 + (1− ρ)
ci + ci + c′

2
+ ηi,t (4)

where ηi,t ∼ TRN(0, σ2
c , ci − ρci,t−1 − (1 − ρ)

ci+ci+c
′

2
, ci + c′ − ρci,t−1 − (1 − ρ)

ci+ci+c
′

2
). σc

is the standard deviation of the untruncated innovation distribution. We calibrate the five

parameters cBL, cML/CL, c
′, ρ and σc. We have also fitted a model where ρ, σc and c

′ vary

across BL and ML/CL, but this only improves the fit slightly.

Objective Function, Matched Statistics and Identification. We calibrate the cost

parameters using indirect inference (Smith (2008)). For a given guess, we solve the model

20These assumed shares overstate the share of BL relative to ML and CL, but understate the share of AB,
relative to Miller and Coors, in the beer market and the light beer segment.
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(see Appendix A.2) and simulate time-series of prices to calculate six statistics/regression

coefficients that we match to equivalent statistics from the data. The objective function

to be minimized is g(θ)′Wg(θ). g(θ) is a vector where each element k has the form gk =

1
M

∑
m τ

data
k,m − τ̂k(θ) where τ

data
k,m is the statistic estimated from the observed data and τ̂k(θ)

is its simulated data equivalent. Our reported results use identity weighting matrices W ,

although, because we match all of the moments almost exactly, alternative W s give similar

calibrated parameters. Minimization uses fminsearch in MATLAB (version 2018a), which

takes between 12 and 24 hours. Standard errors are calculated treating different markets

before the JV as independent observations on the same game.

The six data statistics are calculated using series of average prices from each geographic

market from January 2001 to the announcement of the JV in October 2007. Our baseline

specification uses weekly data and the five most common pack sizes (6, 12, 18, 24 and 30-

packs).21 Market-week-brand-size average real prices per 12-pack equivalent are calculated

excluding temporary store price reductions, and using only market-weeks where we observe

more than five stores. The first two statistics that we match are prices for BL and ML,

averaged across pack sizes and weeks. The third statistic is a measure of the dispersion

of BL prices, calculated as the interquartile range of the market-specific residuals from a

regression where we regress average BL market-week-size prices on dummies for the specific

set of stores observed in the market-week (interacted with pack size), to control for fixed

cross-store differences in retail prices, and week-size fixed effects, to control for national

promotions.

21Our model does not have different pack sizes, market heterogeneity, varying sets of stores or time trends,
so the regressions using simulated data do not control for these factors. See Appendix D.2 for a discussion
of the sample selection.
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Table 5: Pre-JV AR(1) Price Regressions Using Prices for All Pack Sizes for Flagship Brands,
Excluding Temporary Price Reductions

(1) (2) (3)
Dep. Var pBL,t pML,t pCL,t

pBL,t−1 0.451 0.056 0.043
(0.033) (0.017) (0.010)

pML,t−1 0.030 0.409 0.016
(0.011) (0.036) (0.014)

pCL,t−1 0.027 0.021 0.461
(0.012) (0.015) (0.040)

Mean Price ($) 10.08 9.95 9.94
SD Residuals ($) 0.184 0.221 0.197

Observations 36,659 36,670 36,700
R-squared 0.979 0.972 0.978

Notes: include time period×pack size interactions and fixed effects for the set of stores in the sample. De-
pendent variable is the market-week average average price for a specific pack size (sizes containing volumes
equivalent to 6, 12, 18, 24 and 30 12 oz. containers included). Data from January 2001 to the announcement
of the JV. Standard errors, clustered on the market, are in parentheses. The “SD Residuals” statistic is the
standard deviation of the residuals from the regression.

The remaining statistics are coefficients from market-brand-specific regressions where

weekly brand-size prices are regressed on the lagged prices of all three brands, dummies for

the specific set of stores observed in the market-week (interacted with pack size) and a linear

time trend. We match the averages of ρML,ML
m and ρCL,CLm , ρBL,CLm and ρBL,ML

m , and ρML,CL
m

and ρCL,ML
m .

Table 5 shows the coefficients from a similar regression that pools data from all markets

for our baseline sample (weekly, 5 pack sizes, excluding temporary price reductions). The

serial correlation own-price coefficients are between 0.41 and 0.46, while the cross-product

coefficients are positive but smaller. We will also calibrate our model using alternative

samples (see Appendix D.8 for the corresponding regressions). If we include temporary price

reductions, the own-price coefficients fall, consistent with many price reductions lasting only

one week, and the coefficients are larger if we use only 12-packs. When we use monthly data
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we can no longer include fixed effects for the specific set of stores in the sample, so we instead

use market fixed effects. This causes the correlation coefficients to increase, which leads, as

we note later, to our calibrated model implying stronger signaling incentives. Appendix D.8

also shows that when we estimate market-specific coefficients, we tend to estimate larger

own- and cross-product coefficients in markets where the three largest domestic firms have a

larger combined share of the beer market. While our calibration ignores this variation, this

pattern is consistent with our model as serial correlation in simulated data tends to increase

when there is less substitution to the outside good, as one would expect when the signaling

firms have higher market shares.

Assuming that our model has a unique equilibrium, the intuition for the identification

of the cost parameters is straightforward.22 Given the assumed demand parameters and the

observed price levels, the mark-ups implied by the model will identify the lower bounds on

brand marginal costs. The AR(1) coefficients and the dispersion of prices will identify the

range of costs and the parameters of the cost innovation process. We will compare additional

statistics that are not targeted to understand the fit of the model. We also calibrate the

cost-side parameters of a model where firms use CI Nash strategies using the same procedure

and moments.

22The possibility that our game has multiple equilibria may create two issues for estimation. First, the
objective function may be hard to minimize if our solution algorithm jumps between different sections
of the equilibrium correspondence. In practice, we can match our moments almost exactly across many
alternative parameterizations. Second, another equilibrium supported by different parameters might give
similar predictions to the equilibrium that our algorithm finds. This is essentially a potential identification
problem. Here we have to rely on the fact that we have never found multiple equilibria in continuous-type
games, although we suspect that they may exist for some parameters.
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Table 6: Calibrated Parameters for Seven Specifications.

(1) (2) (3) (4) (5) (6) (7)
Model Signal Signal Signal Signal Signal Signal CI Nash
Data Frequency Week Week Week Week Week Month Week
Sizes All 12 only All All All All All
Temp. Price Red. Excl. Excl. Incl. Excl. Excl. Excl. Excl.
Mean Brand Price Elasticity -3 -3 -3 -2.5 -3.5 -3 -3
Mean Flagship Diversion 85% 85% 85% 90% 80% 85% 85%

Lower Bound Cost for BL $5.259 $5.278 $4.845 $4.248 $5.973 $4.616 $5.439
(cBL) (0.222) (0.048) (0.046) (0.043) (0.026) (0.127) (0.010)
L.B. Cost for ML/CL $6.426 $6.528 $5.984 $5.786 $6.874 $5.711 $6.631
(cML/CL) (0.094) (0.014) (0.022) (0.024) (0.017) (0.020) (0.058)

Width Cost Interval $0.600 $0.752 $1.246 $0.556 $0.672 $1.793 $0.672
(ci−ci) (0.043) (0.021) (0.018) (0.102) (0.026) (0.037) (0.097)
Cost AR(1) Parameter 1.178 0.939 0.850 1.222 0.959 0.742 1.088
(ρ) (0.028) (0.011) (0.026) (0.013) (0.012) (0.025) (0.038)
SD Cost Innovations $0.262 $0.278 $0.566 $0.260 $0.270 $0.400 $0.278
(σc) (0.031) (0.001) (0.050) (0.104) (0.026) (0.052) (0.086)

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. Standard errors in parentheses. The data
specifications using weekly data include group-of-store fixed effects when calculating the data statistics. For
the monthly specification, the regression using the data only include market fixed effects. Flagship diversion
refers to the proportion of lost demand that switches to the other two products when the price of one of the
product increases.

4.3 Calibration Estimates and Counterfactuals

Parameter Estimates and Model Fit. Table 6 reports the calibrated parameters for

six signaling models, where different demand parameters are assumed or different price series

are matched. Column (1) is our baseline signaling model specification and column (7) shows

the calibrated parameters for a CI specification that uses the same inputs. The estimated

σc in column (1) implies that the probability that a firm may transition from the highest

marginal cost to below the mean cost is 0.24, which is similar to the 0.32 we used in our

examples, even though the width of the cost support is wider. As the CI Nash model does not

have the feature that signaling exaggerates what cost volatility implies for price volatility,

the estimated CI model has a wider calibrated support for costs and slightly more volatile
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Table 7: Model Fit for Three Specifications Using Weekly Data, Average Brand Price Elasticity
of -3 and Flagship Diversion of 85%

Data Freq. Week Week
Pack Sizes All 12-Packs Only
Temp. Price Red. Excluded Excluded

Data Signal. Model CI Model Data Signal Model

Targeted Moments

Mean pBL $10.09 $10.09 $10.09 $10.30 $10.30
Mean pML $9.96 $9.96 $9.96 $10.22 $10.22
Mean ρML,ML, ρCL,CL 0.402,0.413 0.408 0.407 0.468,0.450 0.444
Mean ρBL,ML, ρBL,CL 0.082,0.066 0.074 -0.000 0.102,0.056 0.076
Mean ρML,CL, ρCL,ML 0.051,0.036 0.046 0.005 0.065,0.026 0.035
IQR pBL $0.189 $0.189 $0.189 $0.185 $0.212

Non-targeted Moments

Mean pCL $9.95 $9.97 $9.97 $10.20 $10.23
ρBL,BL 0.444 0.403 0.412 0.442 0.418
Mean ρML,BL, ρCL,BL 0.059,0.0.42 0.038 -0.002 0.065,0.040 0.038
SD of BL Res. $0.177 $0.107 $0.111 $0.136 $0.122
SD of ML/CL Res. $0.204,$0.189 $0.156 $0.139 $0.161,$0.149 $0.179
IQR pML, pCL $0.222,$0.210 $0.273 $0.250 $0.228,$0.206 $0.316
Skewness of BL Res. -0.361 -0.353 -0.005 -0.307 -0.314

ML/CL Res. -0.100,-0.329 -0.331 -0.004 -0.296,-0.201 -0.297

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. SD = standard deviation. Res. = residuals
from the AR(1) regressions. The calculation of the data statistics is explained in Section 4.2, with the model
predictions based on simulating 10,000 periods of data. For the data we report separate values for the statis-
tics for ML and CL, but, because the model assumes that ML and CL are symmetric, and so predicts identical
statistics (ignoring simulation error), we match the average of these values during estimation and report a sin-
gle prediction.

cost innovations. As one would expect, when we assume more elastic demand, the levels of

calibrated marginal costs increase, and, when we include temporary price reductions in our

price series, calibrated costs become more volatile.

Table 7 reports the fit of the model for the column (1), (2) and (7) specifications. The

upper half of the table shows the targeted moments, which the signaling models match

accurately. The CI model predicts that the cross-brand ρs should be close to zero. The

lower half reports non-targeted moments, including the skewness of the innovations from the

AR(1) regression, which is higher-order than the targeted moments. The signaling models
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Table 8: Predicted Average Prices Before and After the MC JV For Signaling
Model

(1) (2) (3) (4) (5) (6)
Frequency Week Week Week Week Week Month
Sizes All 12 only All All All All
Price Reductions Excl. Excl. Incl. Excl. Excl. Excl.
Brand Elasticity -3 -3 -3 -2.5 -3.5 -3
Flagship Diversion 85% 85% 85% 90% 80% 85%

Pre-JV Mean Prices
BL $10.09 $10.30 $9.81 $10.09 $10.09 $10.09
ML/CL $9.96 $10.22 $9.68 $9.96 $9.96 $9.95
Assumed ML/CL Marginal -$1.18 -$1.20 -$1.14 -$1.50 -$0.94 -$1.17
Cost Change
Post-JV Mean Prices
BL $10.62

(+5.3%)
$10.90
(+5.7%)

$10.17
(+3.7%)

$10.98
(+8.7%)

$10.42
(+3.3%)

fails

ML/CL $10.48
(+5.2%)

$10.79
(+5.8%)

$10.02
(+3.5%)

$10.82
(+8.5%)

$10.27
(+3.1%)

fails

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. For the data we report sep-
arate values for the statistics for ML and CL, but, because the model assumes that ML and
CL are symmetric, and so predicts identical statistics (ignoring simulation error), we report
a single prediction.

match all of the moments well, apart from some underprediction of the standard deviation of

price equation residuals for BL. The CI model fails to match the skewness of price innovations,

as well as the ρML,BL and ρCL,BL coefficients.

Predicted Effects of the JV and Comparison to Observed Outcomes. We re-solve

our model assuming that the JV benefits from a synergy that would keep its average prices

from rising in a CI Nash model, as this appears consistent with the DOJ’s expectation, and

that its owns two brands that it can produce with an identical marginal cost, and which it

sells at the same price. We assume that cBL, ρ, c
′ and σc do not change.

Table 8 shows the predicted prices for each brand before and after the JV for the six

signaling model specifications. Our synergy assumptions mean that our CI model would

predict no price changes. Consistent with what was observed, the price increases in columns
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Figure 7: Bud Light Equilibrium Pricing Strategies (for estimates in column (1) of Table 6).

Notes: the strategies shown assume that cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (lower line) and

cBLt−1 = cBL and cML
t−1 = cCLt−1 = cML/CL (upper line). Therefore, for each type of equilibrium, the

maximum range of BL’s prices spans from the lowest point on the bottom line to the highest point

on the upper line.

(1)-(5) are above 3% and they are similar for the merging brands and BL. We have also found

that these predicted changes are robust to alternative assumptions about the discount factor,

as these alternatives also change the calibrated parameters.23 The conditions required for

separating strategies are violated in the monthly data counterfactual because the parameters,

which are calibrated to price series that do not control for cross-store differences in retail

pricing, imply stronger signaling incentives.

Figure 7 compares, based on the column (1) parameters, BL’s equilibrium pricing strate-

gies for the static Bayesian Nash 3-firm model, the estimated signaling 3-firm model and the

counterfactual post-JV model. Even though BL’s costs are unchanged, the greater respon-

siveness of ML/CL pricing causes BL’s prices to rise and become more volatile. The change

23For example, we recalibrated and recomputed column (1) assuming a weekly β = 0.998, rather than
β = 0.99, consistent with an annual discount factor of around 0.9. The predicted post-JV prices are within
1 cent of those reported in Table 8.
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Table 9: Observed and Predicted Changes in Price Dynamics for Calibrated Signaling Model
(Table 6, col 1) and the Calibrated CI Model (Table 6, col 7) with a Conduct Parameter
(θ = 0.15) to Predict the Same Change in Average Prices.

Calibrated CI Model
Data Calibrated Signaling Model with Conduct

Pre-JV Post-JV Change Pre-JV Post-JV Change Pre-JV Post-JV Change

IQR of Prices

BL $0.189 $0.241 +0.052 $0.189 $0.368 +0.180 $0.188 $0.220 +0.032
ML $0.222 $0.256 +0.034 $0.273 $0.369 +0.096 $0.249 $0.216 -0.033
CL $0.210 $0.244 +0.034 $0.273 $0.369 +0.096 $0.249 $0.216 -0.033
AR(1) Regression Coefficients

ρBL,BL 0.444 0.524 +0.080 0.403 0.440 +0.037 0.412 0.409 -0.002
ρML,ML 0.402 0.483 +0.081 0.408 0.439 +0.031 0.407 0.413 +0.006
ρCL,CL 0.413 0.453 +0.040 0.408 0.439 +0.031 0.407 0.413 +0.006
ρBL,ML 0.082 0.092 +0.010 0.074 0.149 +0.068 -0.000 0.002 +0.003
ρBL,CL 0.066 0.095 +0.029 0.074 0.149 +0.068 -0.000 0.002 +0.003
ρML,BL 0.059 0.087 +0.028 0.046 0.154 +0.108 0.004 -0.000 -0.005
ρCL,BL 0.042 0.080 +0.038 0.046 0.154 +0.108 -0.002 -0.000 +0.002

Notes: BL = Bud Light, ML = Miller Lite and CL=Coors Light. The calculation of the data statistics is ex-
plained in Section 4.2, with the model predictions based on simulating 10,000 periods of data. Pre-JV averages
are calculated for 45 markets, and post-JV averages are calculated for 44 markets, as one market does not have
at least 5 stores observed in consecutive weeks after the JV. The CI Model simulations use the parameter esti-
mates from Table 6, column 7, which assumes CI Nash pricing before the JV, but that after the JV the firms
use a conduct parameter of 0.15. These assumptions predict average BL and ML prices of post-JV $10.62 and
$10.46, which are almost identical to those predicted by the signaling model for the same demand system.

in the slope of the pricing functions is also consistent with a significant increase in the rate

of cost pass-through. After the JV, a 60 cent increase in BL’s unobserved cost raises BL’s

expected price by around 85 cents, compared to 40 cents before the JV.

We can also compare predicted and observed changes in price dynamics. Table 9 compares

the cross-market averages of the IQR and ρ parameter statistics before and after the JV in the

data, and the values predicted by the column (1) model. We also report the predicted values

for the CI model when we assume that, after the JV, the firms use first-order conditions with

a “conduct parameter” weight of 0.15 on the profits of their rivals. This weight is chosen so

that the CI model predicts the same increase in BL and ML/CL price levels as the signaling

model. The signaling model correctly predicts the sign of the changes in each of the reported
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statistics (i.e., more post-JV variation in prices and more own-brand and cross-brand serial

correlation), which is an encouraging result given that the calibration uses no post-JV data.

On the other hand, the CI-conduct model, which was also unable to match the cross-brand

ρs in the pre-JV data, predicts that the dispersion of prices for BL and ML/CL should move

in opposite directions, and that the AR(1) coefficients should hardly change at all.

5 Conclusion

Mailath (1989) showed that when duopolists have private information about marginal costs in

a two-period model, first period equilibrium prices can rise as they simultaneously signal. The

subsequent empirical and antitrust literatures have ignored how this mechanism can affect

prices, likely because it has been presumed that the small amounts of private information

could only have small effects on prices. This presumption is flawed, because of feedback

loops, where, within a period, signaling by one firm can cause rivals to raise their prices

even more, and where it becomes more attractive to invest in signaling when rivals will

be signaling in the next period. We find that, in multi-period and infinite horizon games,

the price effects of even small amounts of private information can be large in concentrated

industries, and that they could lead to mergers being much more harmful for consumers than

a CI Nash model would predict.

In the context of the beer industry, we find that our model can explain observed changes

in price levels after the MillerCoors joint venture, and that it can also explain changes in price

dynamics and cost pass-through which proposed models of collusion or changes in conduct

cannot. An important direction for future empirical research is to understand whether other

46



mergers have been accompanied by changes in dynamics and pass-through, which could

provide a new window into testing different models of post-merger behavior.

As we focus on merger analysis, it is natural to ask how our model relates to the types of

“coordinated” and “unilateral” effects described in the Horizontal Merger Guidelines. The

Guidelines’ discussion of unilateral effects, and the types of upward pricing pressure and

merger simulation analyses that it suggests, considers the pricing incentives of the merged

firm when it takes rivals’ prices as fixed, and, when modeling equilibrium effects, it assumes

that rivals remain on their pre-merger best response functions. In our model, a merger

changes how non-merging firms set prices because their strategy choices depend, in part, on

how they expect the merged firm to respond.

While coordinated effects are often interpreted as referring only to explicit or tacit collu-

sion (Porter (2020)), Baker and Farrell (2019) and Farrell and Baker (2021) offer a broader

definition that includes “non-purposive” theories, such as the non-collusive CI Markov Per-

fect model of Maskin and Tirole (1988) where asynchronous price-setting leads to prices

that differ from Nash. Our model is also in this spirit, although it departs from CI and

is consistent with firms changing prices simultaneously. Importantly, these types of models

suggest that it may sometimes be appropriate to believe that a CI Nash model will under-

predict how much prices will rise after a merger even when an industry has no history of

explicit collusion, it does not have all of the features that are often listed as supporting tacit

collusion (Ivaldi et al. (2003)), and no documents discuss the types of “off-the-equilibrium

path” punishment threats that support higher prices in collusive models.
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APPENDICES TO “DYNAMIC OLIGOPOLY

PRICING WITH ASYMMETRIC INFORMATION:

IMPLICATIONS FOR HORIZONTAL MERGERS”

FOR ONLINE PUBLICATION

A Computational Algorithms

This Appendix describes the methods used to solve our model. We describe the continu-

ous type, finite horizon model in detail, before noting what changes in other cases. Our

discussion will assume that there are two ex-ante symmetric duopolists. When firms are

asymmetric, all of the operations need to be repeated for each firm.

A.1 Finite Horizon Model.

A.1.1 Preliminaries.

We specify discrete grids for the actual and perceived marginal costs of each firm, which will

be used to keep track of expected per-period profits, value functions and pricing strategies.

For example, when each firm’s marginal cost lies on [8, 8.05] and we use 8-point equally

spaced grids, the points are {8, 8.0071, 8.0143, 8.0214, 8.0286, 8.0357, 8.0429, 8.0500}.24 We

use interpolation and numerical integration to account for the fact that realized types will

lie between these isolated points. The discount factor is β = 0.99.

It is useful to define several functions that we will use below:

� Pi,t

(
ĉji,t−1, cj,t−1

)
is firm i’s pricing function in period t. This is a function of the

marginal cost that j believes that i had in the previous period, ĉji,t−1 (which, when

j is forming equilibrium beliefs, will reflect that cost that i signaled in the previous

period). It will also depend on the marginal cost that i believes that j had in the

previous period, but we solve the game assuming that j is using its equilibrium strategy,

so that i assumes that its perception of j ’s prior cost is correct, so we use the argument

cj,t−1. The actual price set will depend on ci,t, and, when we need to integrate over

the values that pi,t may take (e.g., to calculate expected profits) we will include ci,t as

an explicit argument in the function.

24The examples reported in Section 3 use 12 gridpoints, although we have experimented with as many
as 20 gridpoints in each dimension to make sure that this does not have a material effect on the reported
results.
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� πi(pi,t, pj,t, ci,t) is firm i’s one-period profit when it has marginal cost ci,t and sets price

pi,t, and its rival sets price pj,t. This function does not depend on t because demand

is assumed to be static and time-invariant.

� Vi,t

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
is the value function for firm i defined at the beginning of

period t, before firm types have evolved to their period t values. It reflects the

expected payoffs of firm i in period t and the discounted value of expected payoffs in

future periods given equilibrium play in both t and future periods. It depends on

the true value of each firm’s type in t − 1, and the rival’s perception of i’s t − 1 type

(reflecting any deviation that i made in t− 1). In the case of an 8-point grid, Vi,t is a

512x1 vector.

� Πi,t

(
ci,t, ĉ

j
i,t, pi,t, ĉ

j
i,t−1, cj,t−1

)
is the intermediate signaling payoff function of firm i

when it knows its current marginal cost ci,t, and is deciding what price to set. It does

not know the period t type of its rival, but it reflects the pricing function that i expects

j to use, Pj,t

(
cj,t−1, ĉ

j
i,t−1

)
. ĉji,t is the perception that j will have about i’s cost at the

end of period t. When the rival sets price Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
,

Πi,t

(
ci,t, ĉ

j
i,t, pi,t, ĉ

j
i,t−1, cjt−1

)
=

cj∫
cj

 πi

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
+

βVi,t+1

(
ci,t, ĉ

j
i,t, cj,t

)
ψj(cj,t|cj,t−1)dcj,t.

where we note that pi,t only enters through current profits, and ĉji,t only enters through

the discounted continuation value. In practice, our description will make up Πi,t into

two components: Πi,t = π̃i + Ṽi,t, where

π̃i

(
pi,t, Pj,t

(
cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
=

cj∫
cj

πi

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t

)
ψj(cj,t|cj,t−1)dcj,t

and

Ṽi,t

(
ci,t, ĉ

j
i,t, cj,t−1

)
=

cj∫
cj

βVi,t+1

(
ci,t, ĉ

j
i,t, cj,t

)
ψj(cj,t|cj,t−1)dcj,t.

Given a set of fully separating pricing functions Pi,t

(
ĉji,t−1, cj,t−1

)
, the relationship
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between Π and V is that

Vi,t

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
=

ci∫
ci

Πi,t

(
ci,t, ci,t, Pi,t

(
ci,t, ĉ

j
i,t−1, cj,t−1

)
, ĉji,t−1, cj,t−1

)
ψi(ci,t|ci,t−1)dci,t

where we recognize that, in equilibrium, i’s period t pricing function will reveal its cost

to j, implying ĉji,t = ci,t.

A.1.2 Period T .

Assuming that play in period T −1 was fully separating, we solve for BNE pricing strategies

for each possible combination of beliefs (on our grid) about period T − 1 marginal costs. A

strategy for each firm is an optimal price given the realized value of its own period T cost,

given the pricing strategy of the rival, its prior marginal cost and the rival’s belief about

the firm’s period T − 1 cost. Trapezoidal integration is used to integrate over the realized

cost/price of the rival using a discretized version of the pdf of each firm’s cost transition, and

we solve for the BNE prices using the implied first-order conditions (i.e., those associated

with maximizing static profits). With symmetric duopolists and 8-point grids, we find 512

equilibrium prices.

We use the equilibrium prices to calculate the beginning of period value function

Vi,T

(
ci,T−1, ĉ

j
i,T−1, cj,T−1

)
= ...

ci∫
ci

cj∫
cj

πi

(
P ∗
i,T

(
ci,T , ĉ

j
i,T−1, cj,T−1

)
, P ∗

j,T

(
cj,T , cj,T−1, ĉ

j
i,T−1

)
, ci,T

)
ψj(cj,T |cj,T−1)ψi(ci,T |ci,T−1)dcj,Tdci,T .

A.1.3 Period T − 1.

Firms choose prices in period T − 1 recognizing that their prices will affect rivals’ prices in

period T . We solve for period T − 1 strategies, assuming separating equilibrium pricing

and interpretation of beliefs in period T − 2, so that each firm has a point belief about its

rival’s period T − 2 marginal cost. We then use the following steps to compute equilibrium

strategies.

Step 1. (a) Compute

Ṽi,T−1

(
ci,T−1, ĉ

j
i,T−1, cj,T−2

)
= β

cj∫
cj

Vi,T

(
ci,T−1, ĉ

j
i,T−1, cj,T−1

)
ψj(cj,T−1|cj,T−2)dcj,T−1.
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Ṽi,T−1 is the expected continuation value (i.e., not including period T − 1 payoffs) for i when

it is setting its period T − 1 price, without knowing the period T − 1 realization of cj (but

knowing that, in equilibrium, it will be revealed by pj,T−1).

(b) Compute β
∂Ṽi,T−1

(
ci,T−1,ĉ

j
i,T−1,cj,T−2

)
∂ĉji,T−1

using numerical differences at each of the grid-

points (one-sided as appropriate). This array provides us with a set of values for the

numerator in the differential equation (1). These derivatives do not depend on period T −1

prices, so we do not repeat this calculation as we look for equilibrium strategies.

(c) Verify belief monotonicity using these derivatives.

Step 2. We use the following iterative procedure to solve for equilibrium fully separating

prices.25 Use the BNE prices (i.e., those calculated in period T ) as initial starting values.

Set the iteration counter, iter = 0.

(a) Given the current guess of the strategy of firm j, Pj,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, which

is equal to the pricing functions solved for in the previous iteration, calculate
∂π̃i,T−1

(
pi,T−1,Pj,T−1

(
cj,T−2,ĉ

j
i,T−2

)
,ci,T−1

)
∂pi,T−1

for a grid of values

(
pi,T−1, ĉ

j
i,T−2, ci,T−1

)
where

π̃i,T−1

(
pi,T−1, Pj,T−1

(
cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
=

cj∫
cj

πi

(
pi,T−1, Pj,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
ψj(cj,T−1|cj,T−2)dcj,T−1

i.e., the derivative of i’s expected profit with respect to its price, given that it does not know

what price j will charge because it does not know cj,T−1. The derivatives are evaluated on a

fine grid (steps of one cent) of prices.26 This vector will be used to calculate the denominator

in the differential equation (1).

For each

(
ĉji,T−2, cj,T−2

)
,

25We do not claim that this iterative procedure is computationally optimal, although it works reliably in
our examples. There are some parallels between our problem and the problem of solving for equilibrium
bid functions in asymmetric first-price auctions where both the lower and upper bounds of bid functions are
endogenous. Hubbard and Paarsch (2013) provide a discussion of the types of methods that are used for
these problems.

26A fine grid is required because it is important to evaluate the derivatives accurately around the static
best response, where the derivative will be equal to zero.
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(b) Solve the lower boundary condition equation
∂π̃

(
p∗i,T−1,Pj,T−1

(
cj,T−1,cj,T−2,ĉ

j
i,T−2

)
,ci

)
∂pi,T−1

= 0

for p∗i,T−1, using a cubic spline to interpolate the vector calculated in (a). This gives the

static best response price and the lowest price on i’s pricing function.

(c) Using this price as the initial point27, solve the differential equation, (1), to find i’s

best response signaling pricing function. This is done using ode113 in MATLAB, with

cubic spline interpolation used to calculate the values of the numerator and the denominator

between the gridpoints.28 Interpolation is then used to calculate values for the pricing

function for the specific values of ci,T−1 on the cost/belief grid

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
.

(d) Update the current guess of i’s pricing strategy using

P iter=k+1
i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
= (1− τ)P iter=k

i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
+ ...

τP
′

i,T−1

(
ci,T−1,ĉ

j
i,T−2, cj,T−2

)
∀ci,T−1,ĉ

j
i,T−2, cj,T−2

where P
′
i,T−1 are the best response functions that have just been computed. In the finite

horizon case, τ = 1, i.e., full updating, works effectively unless we are close to prices where

the conditions required to characterize the unique best response fail to hold, in which case

we also try using τ = 1

1+iter
1
6
. See discussion below for how we update in the application

where we use an infinite horizon model.

(e) Check if the maximum difference between P iter=k
i,T−1 and P

′
i,T−1, across all gridpoints, is

less than 1e-6. If so, terminate the iterative process, else update the iteration counter to

iter = iter + 1, and return to step 2(a).

(f) Verify that the solved pricing functions are monotonic in a firm’s own marginal costs,

and that, given the pricing functions of the rival, that the single-crossing condition holds for

the full range of prices used in the putative equilibrium.

27In practice, the exact value of the derivative will be zero at the static best response, so that the differential
equation will not be well-defined if this derivative is plugged in. We therefore begin solving the differential
equation at the price where Πi,T−1

3 + 1e − 4 = 0. Pricing functions are essentially identical if we add 1e-5
or 1e-6 instead.

28See discussion of tolerances in Appendix A.2.2.
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Step 4. Compute i’s value Vi,T−1,

Vi,T−1

(
ci,T−2, ĉ

j
i,T−2, cj,T−2

)
= ...

ci∫
ci

cj∫
cj

 π

(
P ∗
i,T−1

(
ci,T−1, ĉ

j
i,T−2, cj,T−2

)
, P ∗

j,T−1

(
cj,T−1, cj,T−2, ĉ

j
i,T−2

)
, ci,T−1

)
+βVi,T (ci,T−1, cj,T−1, ci,T−1)

 ∗ ...

ψj(cj,T−1|cj,T−2)ψi(ci,T−1|ci,T−2)dcj,T−1dci,T−1

where we are recognizing that equilibrium play at period T − 1 will reveal i’s true cost to j.

Note that this is the case even if, hypothetically, ĉji,T−2 ̸= ci,T−2 (i.e., j was misled in period

T −2) because i should find it optimal to use its equilibrium signaling strategy given its new

cost ci,T−1 in response to j using a strategy based on its ĉji,T−2 belief.

A.1.4 Earlier Periods.

This process is then repeated for earlier periods, with an appropriate changing of subscripts.

Given our assumption that first period beliefs reflect actual costs in a fictitious prior period,

this procedure will also calculate strategies in the first period of the game.

A.2 Infinite Horizon Model.

We use an infinite horizon model for some of our examples and the empirical application.

We find equilibrium pricing functions in the continuous type model using a modification of

the procedure described above: in particular, we follow the logic of policy function iteration

(Judd (1998)) to calculate values given a set of strategies.

The equilibrium objects that we need to solve for are a set of stationary pricing functions,

P ∗
i

(
ĉji,t−1, cj,t−1

)
and value functions Vi

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
which are consistent with each

other given the static profit function and the transition functions for firm types.

We start by solving the period T −1 game described previously (i.e., assuming that there

is a one more period of play where firms will use static Bayesian Nash Equilibrium strategies)

to give an initial set of signaling pricing functions (P ∗,iter=1
i ). We then calculate firm values

in each state

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
if these pricing functions were used in every period of an

infinite horizon game. This is done by creating a discretized form of the state transition

process and calculating

V̂ iter=1
i = [I − βT ]−1π′

i

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
6



where

π′
i

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
=

ci∫
ci

cj∫
cj

πi
 P ∗,iter=1

i

(
ci,t, ĉ

j
i,t−1, cj,t−1

)
,

P ∗,iter=1
j

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci,t


ψj(cj,t|cj,t−1)ψi(ci,t|ci,t−1)dcj,tdci,t

and T is a transition matrix that reflects the transition probabilities for both firms’ types

and the behavioral assumption that equilibrium play in t (and future periods) will reveal

period t costs. P ∗,iter=1
j

(
cj,t−1, ĉ

j
i,t−1

)
will reflect P ∗,iter=1

i , applied to the states of the rival,

when the firms are symmetric.

V̂ iter=1
i is then used to compute a new set of pricing functions, P ∗,iter=2

i , and the process

is repeated until prices converge (tolerance 1e-4). Even though policy function iteration

procedures do not necessarily converge, we find they work very well in our setting, when

the conditions for separation hold, although it is sometimes necessary to update the pricing

function to be a linear combination of the previous guess and the newly calculated best

response. As illustrated in Figure 3, converged pricing functions found by this method are

essentially identical to the pricing functions found for the early periods of long finite horizon

games where the exact value of t has almost no effect on equilibrium pricing strategies. The

computational advantage of this procedure comes from the fact that we do not perform the

iterative procedure described above for every period of the game: instead there is a single

iterative procedure where we solve for a single set of pricing strategies for the entire game.

A.2.1 Speeding Up Solutions By Interpolating Pricing Functions.

When we consider more than two firms and allow for asymmetries, the solution algorithm

laid out above becomes slow, with most of the time spent solving differential equations.

For example, with 8-point cost/belief grids, three asymmetric firms and 50 iterations, we

would have to solve 25,600 differential equations. This would make estimation of the model

using a nested fixed point procedure very slow. On the other hand, reducing the number of

gridpoints can lead to inaccurate calculations of expected payoffs, and therefore strategies.

Examination of the equilibrium pricing functions (see, for example, Figure 3) shows that

as we vary rivals’ prior types, a firm’s pricing functions look like they are translated without

(noticeably) changing shape. We exploit this fact by solving for pricing functions for only a

subset of the

(
ĉji,t−1, cj,t−1

)
gridpoints and using cubic splines to interpolate the remaining

values.29 This allows us to achieve a substantial speed increase, while continuing to calculate

29For example, when we estimate our model in Section 4, we use a seven-point cost grid ({1,..,7}) for the
profits and values of each firm. We solve for pricing functions for the full interaction of gridpoints {1,3,5,7}
and then interpolate the pricing functions for the remaining gridpoints.
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expected values accurately on a finer grid.

A.2.2 Tolerances and Updating Rules Used for the Estimation of the Cost
Parameters Using the Infinite Horizon Model.

In Section 4 we estimate the cost parameters using a nested fixed point algorithm, which

means that both speed and accuracy are important. After considerable experimentation, we

use the following tolerances:

� for the parameter search using fminsearch we set the tolerance for the parameter

values at 1e-5 and the tolerance on changes to the objective function at 1e-5. The

value of the minimized objective function is typically less than 0.0002, compared with

the initial guess, for which we use estimates of the parameters assuming firms use

static Bayesian Nash pricing strategies, which usually gives an objective function value

of around 0.2.

� the tolerance for criterion for the pricing functions when solving the model is 1e-6 (i.e.,

at none of the grid points should the price on the best response pricing function be

more than 1e-6 from the current guess).

� for the differential equation solver, the initial step size is 5e-5 and the maximum step

size is 0.003 for the first ten iterations of the algorithm, but we then use an initial step

size of 1e-5 and a maximum step size of 0.001.

� we update the pricing function to be the best response for the first 15 iterations, and

then use a linear combination of the best response and the current guess where the

weight on the best response changes linearly from 1 (iteration 16) to 0.1 (iteration

115).

When we use these tolerances, the infinite horizon game is typically solved using some-

where between 12 and 45 iterations, taking between 3 and 20 minutes. Estimation of the five

parameters usually requires around 250 function evaluations, although the objective function

and parameters are usually close to their final values within 100 evaluations.

A.3 Two-Type Model.

We use a model where each firm can have one of two types when we want to examine all

strategies simultaneously or to consider a large number of alternative demand parameters.

An additional advantage is that because prices, profits and values can be calculated for each

possible type, we avoid small inaccuracies that result from numerical integration.

8



The key difference to the solution algorithm is that we no longer solve differential equa-

tions to find best response pricing functions. Recall that in the continuous type model, the

differential equations characterize the unique separating best response when the signaling

payoff function satisfies several conditions. In the discrete type model, one can construct

multiple separating pricing functions that can be supported for different beliefs of the rival

firm. To proceed we therefore need to choose a particular pricing function. We describe our

choice, and the method we use to calculate the best response prices here. This procedure can

be embedded within the procedure for solving either a finite horizon or an infinite horizon

game.

To be as consistent with the continuous type model as possible, we use the prices that

allow the two types to separate at the lowest cost, in terms of foregone current profits

taking the current guess of the pricing function of the rival as given, to the signaling firm

(i.e., “Riley” signaling strategies, which would also be those that satisfy application of the

intuitive criterion).30

The amended computational procedure is as follows (described for the infinite horizon

case). Suppose that we are looking to find the pricing strategy of firm i in period t when

it believes that j’s previous cost was cj,t−1 and j believes that i’s previous cost was ĉji,t−1.

We will repeat this process for each

(
ĉji,t−1, cj,t−1

)
combination, of which there will be four

in the duopoly model. We need to solve for two prices: i’s price when its cost is ci and its

price when its cost is ci.

Step 1. Find p∗i,t(ci), which will be the static best response, as the solution to

∂π̃

(
pi,t,Pj,t

(
cj,t,cj,t−1,ĉ

j
i,t−1

)
,ci

)
∂pi,t

= 0 where

π̃i

(
pi,t, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
=

πi

(
pi,t, Pj,t

(
cj, cj,t−1, ĉ

j
i,t−1

)
, ci

)
Pr(cj,t = cj|cj,t−1) + ...

πi

(
pi,t, Pj,t

(
cj, cj,t−1, ĉ

j
i,t−1

)
, ci

)
Pr(cj,t = cj|cj,t−1)

Step 2. Find p∗i,t(ci). This is done by finding the price, p′, higher than p∗i,t(ci), which

would make the low cost firm indifferent between setting price p∗i,t(ci) and being perceived

30Of course, in the game we are considering it could be advantageous to the firms to use higher signaling
prices, because of how this raises rivals’ prices in equilibrium. This equilibrium consideration is ignored
when selecting the Riley best response.
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as a low cost type, and setting price p′ and being perceived as a high cost type, i.e.,

π̃

(
p∗i,t(ci), Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
+ βṼi,t+1(ci, ci, cj,t−1) = ...

π̃

(
p′, Pj,t

(
cj,t, cj,t−1, ĉ

j
i,t−1

)
, ci

)
+ βṼi,t+1(ci, ci, cj,t−1)

where

βṼi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj,t−1

)
= Vi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj

)
Pr(cj,t = cj|cj,t−1) + ...

Vi,t+1

(
ci,t−1, ĉ

j
i,t−1, cj

)
(1− Pr(cj,t = cj|cj,t−1)).

We verify that, consistent with single-crossing, the ci type prefers to set the price p′ rather

than setting its static best response price. We also verify belief monotonicity when we

calculate the value functions. As illustrated in Section B.1, there are parameters for which

belief monotonicity fails.

10



B Additional Examples.

B.1 Two-Type Examples.

A model where each firm can have one of two types has a much lower computational burden

than the continuous type model. In this Appendix we will consider several parameterizations

of a two-type model. In all of them we assume that firms are symmetric and that in any

period ci = c = 8 or ci = c = 8.05. The probability that the cost remains the same as in the

last period is 0.5 ≤ ρ < 1. There are no signaling incentives when ρ = 0.5.

Refinement. A disadvantage of the two-type model is that for a given pricing strategy

of firm j, firm i’s separating best response pricing function is not unique in the sense that

it depends on how firm j will interpret the signal. We therefore impose a refinement that

is consistent with the logic of the “intuitive criterion” (Cho and Kreps (1987)), which has

often been applied as a refinement in discrete-type signaling games where only one player is

signaling. Specifically, we assume that the low cost type’s strategy will be the static best

response, as in the continuous type model, and, under assumptions that appropriately map

Conditions 1-4 to the two-type case, the high cost type’s best response price will be the

lowest price that the low cost type would be unwilling to set even if this would result in

rivals’ perceiving it as a high cost type rather than a low cost type. While this does uniquely

define the best response, it does not guarantee a unique equilibrium in the oligopoly signaling

game, and we have identified several examples in the infinite horizon version of the two-type

model where there are multiple equilibria. The results reported in this Appendix use an

algorithm which, when an infinite horizon equilibrium exists, appears consistently to select

the equilibrium which corresponds to the equilibrium in the early periods of a long finite

horizon game.

Method. See Appendix A.3 for a description of the method used to solve the two-type

model.

B.1.1 Outcomes for Alternative Serial Correlation and Demand Parameters.

We assume nested logit demand where the indirect utility function for consumer c has the

form ui,c = β − αpi + σνc + (1− σ)ϵi,c. We choose β, α and σ so that, for each combination

of parameters that we consider, the CI equilibrium prices (at average cost levels) are $16

for each firm, the market share of each firm at these prices is 0.25, and the diversion, which

measures the proportion of a product’s lost demand that goes to the rival’s product, rather

11



than the outside good, when its price increases from the CI equilibrium price, has a value

that we specify. We focus on diversion because when more demand goes to the outside

good, which is like a competitor that always offers a fixed utility and does not respond to

a signal, firms have less incentive to signal and, as we will show, the belief monotonicity

and single-crossing conditions become harder to satisfy.31 Given assumed market shares, the

lowest possible value of this diversion measure is 1
3
, which corresponds to multinomial logit

demand. We vary ρ from 0.5 (in which case there is no incentive to signal) to 0.99. We solve

an infinite horizon version of our model.

Figure B.1 shows the results for a fine grid of values of diversion and ρ. The orange

crosses indicate combinations where the conditions for characterizing best responses fail and

we cannot find a separating equilibrium. For combinations where we can find a separating

equilibrium the size and color of the circles indicate the percentage increase in average

prices relative to average static Bayesian Nash equilibrium prices with the same demand and

serial correlation parameters (these prices are also always very close to $16). When serial

correlation is very low, the price effects are always small whatever the level of diversion, and,

for given diversion, the price effects become larger as serial correlation increases. For given

serial correlation, higher diversion is associated with larger price effects, as it becomes more

beneficial for a firm to increase its rival’s price (because more of the demand that the rival

loses will come to the firm), and the increase in a rival’s price has a greater effect on the

firm’s best response. For moderate diversion, such as 0.6, an equilibrium cannot be sustained

once serial correlation increases above 0.66. When diversion to rival products is very high,

equilibria can be sustained with very large price effects: we find a maximum price increase

of 44.8%.32

B.1.2 Failure of the Conditions Required for Existence of a Separating Equi-

librium.

We now consider in more detail an example where the conditions required for separation fail.

Demand is the same as before (i.e., indirect utility is ui,c = 5−0.1pi+0.25νc+(1−0.25)ϵi,c),

and each firm’s marginal cost is either 8 (low) or 8.05 (high). We assume that ρ = 0.99 so

a signal is very informative about next period’s marginal costs and signaling incentives are

31The intuition is that when the rival’s expected price increases, a firm may have a greater incentive to
lower its price, towards a static best response price, to take demand from the outside good. See below for
an example.

32In the diagram, the highest serial correlation for which we can find an equilibrium falls when we increase
diversion above 0.95. This appears to reflect the fact that, at this level, small increases in diversion can
increase signaling prices significantly, leading the conditions to fail. For each considered value of diversion
above 0.95, we identify a value of ρ where signaling raises prices by more than 43.0% and 44.8%.

12



Figure B.1: Equilibrium Average Price Increases in the Infinite Horizon Two-Type Duopoly
Model as a Function of Diversion and Serial Correlation of Costs
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Notes: red dots mark outcomes where there is a stationary separating equilibrium with average

prices less than 0.5% above static BNE levels. The blue circles mark outcomes where there is a

stationary separating equilibrium with larger average price increases relative to static BNE prices,

and the size of the circle is linearly increasing in the percentage difference in prices (the largest

effect shown has average prices increasing by 44.8%). Orange crosses mark outcomes where the

conditions required to solve for best response functions fail and we cannot find an equilibrium. The

diversion is measured by the proportion of demand that goes to the rival product when one product

experiences a small increase in price at CI Nash equilibrium prices given average costs.
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strong.

Figure B.2: Equilibrium Prices in the Two-Type Marginal Cost Model (parameters described
in the text)
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Figure B.2 shows the full set of eight equilibrium prices in each period as we move

backwards from the end of the game. The legend denotes states by {“the firm’s perceived

cost in t− 1”, “its rival’s perceived cost in t− 1” - “the firm’s realized marginal cost in t”}
so blue indicates prices for a firm whose perceived marginal cost in the previous period was

high, its rival’s perceived previous period cost was low, and a cross (circle) indicates that

the firm’s current cost is low (high).

The green crosses (LL-L) remain almost unchanged across periods, as they represent

static best responses when both players know that their rival is very likely to be setting the

same price, but, as we move earlier in the game, the remaining prices increase, because they

involve either signaling (by a c firm) or a static best response to a rival who is likely to be

raising its price to signal.

In period T − 6 the order of the prices changes with the HH-H price (red circle) below

the HL-H price (blue circle). This implies that in period T − 7, a firm that believes its rival

is likely to be high cost, is more likely to increase its rival’s next period (T − 6) price if it

(the firm) is believed to be low cost than if it is believed to be high cost. As profits increase

in the rival’s price, this will lead belief monotonicity to be violated.

Why does the order of the red and blue circles switch? It reflects changes in both the

incentive to signal (i.e., the possible effect on future prices) and the cost of signaling (i.e.,

the effect on current profits). Recall that in the two-type model the equilibrium price of

the c type is determined by the lowest price that the low-cost firm would be unwilling to
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Figure B.3: Period T − 6 Profit Functions in the Two-Type Game
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set even if choosing it would lead to it being perceived as high cost. Consider the cost, in

terms of foregone period T −6 profit, for a low-cost firm of raising its price. The upper panel

of Figure B.3 shows the period T − 6 one-period profit functions for a low cost firm given

different beliefs about previous firm types and the expected price of the rival.33 The lower

panel shows the corresponding derivatives of the profit function with respect to the firm’s

own price. For prices above $34, the marginal loss in profit from a price increase is greater

for a red firm (i.e., a firm likely to face a high cost rival) than a blue firm (i.e., a low cost

rival) so it is less costly for the blue firm to raise its price.34

Now consider the incentive of a low-cost firm to signal (i.e., to pretend to be high-cost).

The incentive of an HL (blue) firm to signal a high cost in period T − 6 is that it is very

likely to lead to its rival setting the black cross, rather than the green cross, price in period

T − 5. This difference is large, so that the incentive to signal is strong. The incentive of

an HH (red) firm to signal is that this will very likely lead to it facing the red, rather than

the blue, circle price in period T − 5. These period T − 5 prices are closer together (than

the black and green crosses) so the incentive to signal will tend to be weaker. The cost and

the incentive effects together lead to a reversal of the order of the period T − 6 equilibrium

prices, causing belief monotonicity to fail in period T − 7.

33For example, an HL firm expects to face a low-cost LH firm (setting a black cross price) with probability
0.99, so the expected rival price is $29.46.

34The crossing of the derivative functions reflects the failure of strategic complementarity (defined as
∂2πi

∂pi∂pj
> 0) for logit-based demand when prices are significantly above static profit-maximizing levels. The

intuition is that, as a rival’s price increases, the incentive for a firm to reduce its (high) price towards the
static best response price can increase.
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B.2 Alternative Sources of Asymmetric Information.

While it is plausible that, in many industries, firms have some private information about

their marginal costs and that whatever is unobserved is likely to be serially correlated, our

results are not dependent on assuming that it is marginal costs that are privately observed.

In this Appendix we consider three examples where marginal costs are fixed and known

and the asymmetric information is embedded in a different part of the profit function. In

each case we show that equilibrium prices can be significantly higher, and more volatile,

than in the CI or static incomplete information versions of the model. The fact that other

formulations generate similar results is not surprising, but we perform the calculations in

order to emphasize the point that we are not tied to the marginal cost assumption. In all

cases, we assume single-product duopolists, as in Section 3, and we solve the continuous type,

infinite horizon version of our model. The demand parameters also take on their baseline

values from Section 3, and marginal cost of each firm is held fixed at 8.

Variant 1: Weights on Profits and Revenues. In the first variant, we allow for there

to be uncertainty about the weight that each firm places on profits rather than revenues. A

number of theoretical and empirical papers study whether managers want to maximize prof-

its or alternative outcome variables, and whether shareholders might strategically choose to

incentivize managers to deviate from profit maximization (e.g., Sklivas (1987), Katz (1991),

Murphy (1999), De Angelis and Grinstein (2014)). The empirical literature suggests that

managers are affected by a variety of incentives that may be complicated for outsiders to eval-

uate and which may vary over time, depending on oversight from shareholders or corporate

boards, and financial constraints.

Without assuming a particular theory of governance, we suppose that the weight placed

on profits by firm i in period t is τi,t and that this variable lies on the interval [0.89, 0.9],

with the remaining weight on firm revenues. As before, we suppose that the variable evolves

according to a truncated AR(1) process, with ρ = 0.8. The standard deviation of the

innovations is chosen so that, as for our baseline model where marginal costs are private

information, the probability that a type will transition from the highest point of the support

in one period to a value in the lower half of the support in the next period is 0.32.

The first panel of Table B.1 reports the average CI price when both firms (are known

to) maximize profits is 22.59. When a firm places some weight on revenues, it will tend

to set a lower price, and the average static BNE or CI price when the profit weight lies

on [0.89, 0.90] is 21.79. However, with signaling, average prices increase significantly: in

this example, the average Markov Perfect Bayesian Equilibrium price is 8.2% above the

average price level when both firms are known to maximize profits, with profits increasing
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by 18%. This example suggests there may be some advantage to shareholders if they keep

managers’ incentives opaque to rivals even in markets where firms set prices for differentiated

products.35

Variant 2: Weight on Profits of Other Firms in the Industry. In the empiri-

cal Industrial Organization literature, it is common to model tacitly collusive behavior in a

reduced-form way by generalizing static first-order conditions to allow for each firm to place

some weight on the profits of other firms in the same market (Porter (1983), Bresnahan

(1989), Miller and Weinberg (2017)). This type of formulation could also be rationalized

by models where participants in financial markets become more optimistic about a firm’s

prospects when its rivals announce high profits (Rotemberg and Scharfstein (1990)) or by

models where firms maximize the overall returns of shareholders who hold stock in competi-

tors (O’Brien and Salop (1999), Azar, Schmalz and Tecu (2018)).

We consider a model where rivals have some limited uncertainty about the weight that

a firm places on its own profit rather than the profit of the industry. Specifically we assume

that each firm places a weight τi,t of [0.98, 1] on its own profits, and 1−τi,t on the profits of the

industry as a whole (of course, its own profits also contribute to industry profits). We assume

that the transition process has ρ=0.8 and σ = 0.0088, which means that the probability of

a type transitioning from the highest point of the support to below the median is 0.32, as in

the first example. As can be seen in the second panel of Table B.1, the effect is, once again,

to raise prices substantially in the dynamic game with asymmetric information.

Variant 3: Demand Shocks. Our experience in seminars is that many economists

believe it is more intuitive that some aspect of demand will be private information to the

firm than marginal costs will be.

Some formulations of demand uncertainty give rise to signaling incentives that would be

qualitatively different from the ones in our framework. For example, suppose that demand

has a logit structure and that each firm has private information about the serially correlated

and unobserved quality of its product. Duopolist firms observe each other’s prices but not

quantities, so that prices are informative about quality. A firm with higher quality will want

to charge a higher price, but its rival’s optimal price will likely decrease in the firm’s quality,

so it is unclear whether a firm will want to be perceived as high quality or as low quality.

This is likely to be a case where only some type of pooling equilibrium exists.

Here we consider a simple example where firms do have incentives to raise prices to signal

that their demand is high. Suppose that each firm sells its products in two markets. In one

35The usual explanation for why shareholders might want to commit to incentivizing their managers to
place some weight on revenues comes from quantity-setting models where other firms will reduce their output
when a firm’s managers are committed to increase their output. In our model it is uncertainty about what
firms are trying to maximize that causes equilibrium prices to rise, through the mechanism of signaling.
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market, the firms compete as duopolists, but in the other market the firm is a monopolist

(so for example, both firms are in market A, firm 1 is the only firm in market B, and firm 2

is the only firm in market C). Due to the possibility of arbitrage, or some other constraint,

each firm can only set one price across the markets. One rationalization of this setup would

be that each firm has some loyal or locked-in customers, but that additional consumers are

competed for. Product quality is known, but firms are uncertain about the size of their rival’s

loyal market. Normalizing the size of the common market to 1, the sizes of the loyal markets

lie between [0.1, 0.12]. The utility specification is the same as before except loyal customers

only choose between a single product and the outside good. The transition assumptions are

the same as in variant 2. In this formulation, firms will set prices based on the weighted

average marginal revenues from the two markets, and when the size of their monopoly market

is larger they will prefer higher prices. A firm will therefore have incentive to raise its price

to signal that its monopoly market is larger.

The results are presented in the third panel of Table B.1. The addition of the loyal

market, where a firm’s demand is less elastic, raises prices under all information structures,

but the average signaling equilibrium prices are 10% higher than the prices under CI or in a

static game with asymmetric information.
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C Existence and Uniqueness of a Fully Separating Equi-

librium in a Finite Horizon Game with Linear De-

mand

As discussed in the text, Mailath (1989) and Mester (1992) provide proofs of the existence

and uniqueness of a fully separating equilibrium in a two-period duopoly, linear demand,

continuous cost price-setting game and a three-period duopoly, linear demand, continuous

cost quantity-setting games respectively. This Appendix presents a theoretical proof of

existence and uniqueness of a fully-separating Markov Perfect Bayesian Equilibrium for a

finite-horizon duopoly pricing game with linear demand and marginal costs that are private

information, under a condition that the range of costs is “small enough” so that the single-

crossing condition holds. As explained in the text, we have to rely on computational analysis

when assuming nonlinear demand or an infinite horizon, and in our application we assume

both.36 However, we include our proof for the linear demand and finite horizon case for

completeness.

We make the following specific assumptions on the model. There are two firms, and i

will index the firm.

Assumptions

A1 (linear demand). qi,t = ai − b1,ipi,t + b2,ipj,t, b1,i > b2,i > 0.

A2 (positive demand). The intercepts a are large enough that for all of the prices charged

on the equilibrium path, both firms will have positive output.

A3 (continuous cost interval). The marginal costs of each firm, ci,t, lie on compact

intervals where [ci, ci] where ci > ci > 0.

A4 (cost transitions). Costs evolve independently according to first-order Markov pro-

cesses with conditional densities Ψi(ci,t|ci,t−1), where the conditional density functions are

smooth in ci,t and ci,t−1 and strictly positive for all [ci, ci]. E(ci,t|ci,t−1) is continuous and

strictly increasing in ci,t−1.

A5 (discount factor). There is a common discount factor 0 < β < 1.

The statement of the results and the proof will use the following notation.

� πi,t denotes per-period profits in period t. πi,t = (pi,t − ci,t)qi,t(pi,t, p−i,t).

� Vi,t(ci,t−1, ĉi,t−1, cj,t−1) is i’s value at the beginning of period t, before ci,t is revealed,

when it is perceived to have cost ĉi,t−1, and its real cost is ci,t−1, and it believes that

j’s t− 1 cost was cj,t−1.

36Our proof is for two firms that may be asymmetric. Extending the proof to three symmetric firms is
straightforward.
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� Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) (“signaling payoff function”) represents the expected current and

future profits (given equilibrium behavior in future periods) of firm i in period t, when

it sets price pi,t, has cost ci,t and is perceived, at the end of the period, as having cost

ĉi,t. cj,t−1 is i’s perception of j́’s cost in period t− 1. In equilibrium, this perception

will be correct so we denote it simply by cj,t−1. Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is implicitly

conditioned on j’s period t pricing strategy, which will involve j setting a price with

an average of pj,t and which i assumes will reveal cj,t. Πi,t
k (ci,t, ĉi,t, pi,t, cj,t−1) denotes

the derivative of Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) with respect to the kth argument.

� Prices (the proof will indicate conditioning arguments where necessary):

– p∗i,t is i’s equilibrium strategy in a fully separating MBPE (i.e., it is a function);

– pBRi,t is i’s separating best response pricing function given some separating strategy

(not necessarily the equilibrium strategy) by j;

– p∗∗i,t is a price that is a statically optimal best response (i.e., maximizes i’s current

profits) given j’s strategy;

– pj,t is the average price set by j when it uses a particular strategy; and,

– our description of separating pricing strategies will refer to “initial values”, which

will reflect a p∗∗i,t price determined as the solution to a static profit maximization

problem when ci,t = ci, and, the “increment” which refers to the additional price

above this initial value that may reflect signaling behavior.

C.1 Preliminary Results.

We begin with a useful Lemma.

Lemma 1 In a fully separating Markov Perfect Bayesian Equilibrium, play on the equilib-

rium path will have the following properties, (L-i) p∗i,t will be a function of ci,t and the costs

ci,t−1 and cj,t−1 revealed by prices at t− 1; (L-ii) the only effect of ci,t−1 on p
∗
i,t is through the

effect that it will have on the expected value of pj,t; (L-iii) i’s period t price, and the inference

that j makes about ci,t, based on this price, will affect i’s profits in t and t+ 1 only.

Proof. (L-i) In a fully separating equilibrium, prices at t − 1 will reveal marginal costs at

t−1 and the first-order Markovian assumption on the Ψis implies that costs at t−1 contain

all available information from earlier periods about costs. The Markovian equilibrium

assumption implies that strategies depend on payoff-relevant state variables (current costs)

22



and beliefs about those variables, only. This implies that strategies can be functions of ci,t

(which is private information to i when pi,t is chosen), ci,t−1 and cj,t−1 only.

(L-ii) The equilibrium choice of p∗i,t will depend on its effect on expected profits in future

periods and expected profits at t. Property (L-i) implies that given pi,t, which reveals ci,t,

ci,t−1 will not affect what happens at t+1. Expected profits in period t are (pi,t− ci,t)(ai−
b1,ipi,t + b2,ipj,t) so ci,t−1 can only affect i’s payoffs through its effect on pj,t.

(L-iii) Suppose that instead of equilibrium price p∗i,t, i sets a price p′i,t in the range of the

equilibrium price function. t+ 1 strategies specify an optimal strategy for i given ci,t+1, cj,t

and the cost implied by p′i,t, and it will be optimal to use these strategies at t + 1 (because

of property (L-ii)), so t+1 strategies will correctly reveal ci,t+1. Therefore charging p′i,t not

p∗∗i,t only affects profits at t and t+ 1.

Our results characterizing firm i’s separating best response function in period t, given a

fully revealing pricing strategy, of any form, by j and the assumed form of strategies at t+1,

are based on the following theorems which are adapted from Mailath (1987).

Theorem 1 Adapted from Theorems 1 and 2, and the Corollary, in Mailath (1987). If

(MT-i) Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is smooth in arguments (ci,t, ĉi,t), (MT-ii) Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) >

0 [belief monotonicity], (MT-iii) Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) > 0 [type monotonicity], (MT-iv)

Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) = 0 for only one pi, and for this pi, Π

i,t
33(ci,t, ĉi,t, pi,t, cj,t−1) < 0 [strict

quasi-concavity], (MT-v) there exists k > 0 such that Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) ≥ 0 implies∣∣Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1)
∣∣ > k, then a pricing function pBRi,t (ci,t, cj,t−1) that solves the differen-

tial equation
∂pBRi,t (ci,t, cj,t−1)

∂ci,t
= −Πi,t

2 (ci,t, ci,t, pi,t, cj,t−1)

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1)

and has a lower initial value condition where pBRi,t (ci, cj,t−1) solves Π
i,t
3 (ci, ci, p

BR
i,t (ci, cj,t−1), cj,t−1) =

0 is the unique fully separating best response function if a fully separating best response exists.

Theorem 2 Adapted from Theorem 3 in Mailath (1987). Suppose assumptions (MT-i)-

(MT-v) in Theorem 1 hold. If (MT-vi), for (ĉi, p) in the graph of pBRi,t (ci,t, cj,t−1),
Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

is either strictly increasing or decreasing in ci,t [single-crossing], then the fully separating best

response described in Theorem 1 exists.

C.2 Main Result.

The following theorem gives our main result.
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Theorem 3 If ci−ci is small enough for all i, in any finite horizon game there will exist

a unique fully separating MPBE where, on the equilibrium path, firm i’s equilibrium pricing

strategy p∗i,t(ci,t, ci,t−1, cj,t−1) in any period t < T has the form of the best response function

described in Theorem 1. In period T firms will choose static payoff-maximizing prices given

their beliefs about rivals’ costs in period T − 1. In periods t < T , pricing strategies will

have the following features: (T-i) (a) the initial values (i.e., static best response prices when

ci,t =ci) are functions of cj,t−1 and ci,t−1 only (in the following we will denote the function that

determines the initial value gi,t(cj,t−1, ci,t−1)), and (b) the increment above the initial value

(a function fi,t(ci,t, cj,t−1)) is a continuous function of ci,t and cj,t−1 only, and in particular

it does not depend on pj,t; (T-ii) for all ci,t >ci the price charged is always above the static

best response price for ci,t, (T-iii) the effect of cj,t−1 on the increment only comes through

its effect on i’s belief about the distribution of cj,t+1, and (T-iv) (a) i’s pricing function is

continuous and strictly increasing in ci,t, (b) i’s pricing function is continuous and strictly

increasing in pj,t, (c) i’s pricing function is continuous and strictly increasing in ci,t−1 and

(i’s perception of) cj,t−1.

C.2.1 Proof.

The proof uses induction, showing that if strategies have this form in periods t+ 1,...,T − 1

there will exist a unique MPBE with the required form in any period t < T − 1. We then

show that the form of equilibrium strategies in period T will lead to strategies that have the

specified form in period T − 1.

Period t < T−1. The logic of the proof for period t is to show that the conditions required

for Mailath’s theorems hold given Lemma 1 and the assumed equilibrium form of pricing

behavior in t+ 1. This shows that there will be a unique best response pricing function for

each firm given any separating strategy of the other firm. This will let us show some of the

features specified above. We then show that there can be only one pair of pricing functions

with these properties that are best responses to each other, and this will allow us to show

the remaining features.

Uniqueness, Existence and Form of i’s Fully Separating Best Response Function Given j’s

Strategy.

We go through the conditions required for Mailath’s results in turn.

Condition (MT-i): Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) is smooth in arguments (ci,t, ĉi,t). Lemma 1 implies
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that

Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) = Eπi,t(ci,t, pi,t, pj,t) + βE(Vi,t+1(ci,t, ĉi,t, cj,t|cj,t−1))

where the second expectation is over the cost that j reveals in period t. Eπi,t(ci,t, pi,t, pj,t) =

(pi,t−ci,t)(ai−b1,ipi,t+b2,ipj,t) which is smooth in ci,t. Profits in t+1 will be equal to (pi,t+1−
ci,t+1)(ai − b1,ipi,t+1 + b2,ipj,t+1) and smoothness of the period-t expectation of these profits

follows from the assumed smoothness of the Ψi conditional densities (A4) and the continuity

of the pricing functions (T-i/T-iv). Similar logic (and the results concerning period T prices

below) implies that the period-t expectation of discounted profits in t+2 and future periods

will also be continuous in ci,t, cj,t−1 and ĉi,t. Therefore βE(Vi,t+1(ci,t, ĉi,t, cj,t|cj,t−1)) will be

smooth in ci,t, ĉi,t and cj,t−1.

Condition (MT-ii): Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) > 0. From Lemma 1, ĉi,t only affects future prof-

its in period t+1 given equilibrium play from t+1 forwards (L-iii). Denote expected profits in

period t+1 when j charges an expected price pj,t+1(ĉi,t, cj,t), Eπi,t+1(ci,t+1, pi,t+1, pj,t+1(ĉi,t, cj,t)),

so

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1) =

∫ ∫
∂Eπi,t+1(ci,t+1, pi,t+1, pj,t+1(ĉi,t, cj,t))

∂ĉi,t
Ψi(ci,t+1|ci,t)Ψj(cj,t|cj,t−1)dci,t+1dcj,t

Given that
∂pj,t+1(ĉi,t,cj,t)

∂ĉi,t
> 0 (T-iv (c)), it is sufficient to show that

∂Eπi,t+1(ci,t+1,pi,t+1,pj,t+1)

∂pj,t+1
>

0.

Express the price that i charges in t + 1 as pi,t+1 = p∗∗i,t+1(pj,t+1, ci,t+1) + p′, where

p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-maximizing best response to pj,t+1 given ci,t+1 and

p′ ≥ 0 is an increment above the static best response price. Linear demand implies that i’s

expected t+ 1 profit is

Eπ′
i,t+1(ci,t+1, p

′, pj,t+1) = (p∗∗i,t+1(pj,t+1, ci,t+1) + p′ − ci,t+1)(ai − b1,i(p
∗∗
i,t+1(pj,t+1, ci,t+1) + p′) + b2,ipj,t+1)

= Eπ′
i,t+1(ci,t+1, 0, pj,t+1) +

∫ p′

0

∂Eπ′
i,t+1(ci,t+1, x, pj,t+1)

∂x
dx

= Eπ′
i,t+1(ci,t+1, 0, pj,t+1) +

∫ p′

0

(−2bi,1x)dx

where the last line uses the facts that

∂Eπ′
i,t+1(ci,t+1, x, pj,t+1)

∂x
= ai − 2b1,ip

∗∗
i,t+1(pj,t+1, ci,t+1)− 2b1,ix+ b2,ipj,t+1 + b1,ici,t+1,
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and

ai − 2b1,ip
∗∗
i,t+1(pj,t+1, ci,t+1) + b2,ipj,t+1 + b1,ici,t+1 = 0,

as p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-maximizing price, so that
∂Eπ′

i,t+1(ci,t+1,x,pj,t+1)

∂x
=

−2b1,ix.

Therefore,

∂Eπ′
i,t+1(ci,t+1, p

′, pj,t+1)

∂pj,t+1

=
∂Eπ′

i,t+1(ci,t+1, 0, pj,t+1)

∂pj,t+1

= b2,i(p
∗∗
i,t+1(pj,t+1, ci,t+1)− ci,t+1) > 0.

where the final step uses the envelope-theorem as p∗∗i,t+1(pj,t+1, ci,t+1) is the static profit-

maximizing price.

Condition (MT-iii): Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) > 0.

∂Πi,t(ci,t, ĉi,t, pi,t, cj,t−1)

∂pi,t
= ai − 2bi,1pi,t + b2,ipj,t + bi,1ci,t

as, conditional on ĉi,t, pi,t only affects period t profits. Therefore,

Πi,t
13(ci,t, ĉi,t, pi,t, cj,t−1) =

∂Πi,t(ci,t, ĉi,t, pi,t, cj,t−1)

∂pi,t∂ci,t
= b1,i > 0

Condition (MT-iv): Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) = 0 for only one pi,t, and for this pi,t, Π

i,t
33(ci,t, ĉi,t, pi,t, cj,t−1)

< 0.

Πi,t
33(ci,t, ĉi,t, pi,t, cj,t−1) = −2b1,i < 0 ∀pi,t

so Πi,t(ci,t, ĉi,t, pi,t, cj,t−1) will have a unique maximum in pi,t.

Condition (MT-v): there exists k > 0 such that if Πi,t
33(ci, ĉi, pi, cj,t−1) ≥ 0 then

∣∣Πi,t
3 (ci, ĉi, pi, cj,t−1)

∣∣ >
k. As Πi,t

33(ci, ĉi, pi, cj,t−1) < 0 for all pi,t, the condition is trivially satisfied.

Therefore, based on Theorem 3, if a fully separating best response function in period t

exists, it is uniquely characterized as pBRi,t (ci,t, cj,t−1) as the solution to a differential equation

∂pBRi,t (ci,t, cj,t−1)

∂ci,t
= −Πi,t

2 (ci,t, ci,t, pi,t, cj,t−1)

Πi,t
3 (ci,t, ci,t, pi,t, cj,t−1)
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with a lower initial condition price pBRi,t (ci, cj,t−1) that solves Π
i,t
3 (ci, ci, p

BR
i,t (ci, cj,t−1), cj,t−1) =

0.

Period t Pricing Function Properties, Part I

Before discussing single-crossing, we can now prove some features of period-t pricing

functions given this characterization of best responses.

Feature (T-ii): the price charged is always above the static best response price for all ci,t >ci.

Proof: as Πi,t
2 (ci,t, ci,t, pi,t, cj,t−1) > 0, and is independent of the value of pi,t, and Πi,t

3 (ci,t, ci,t, pi,t, cj,t−1) <

0 for prices above the static best response price, and Πi,t
3 (ci,t, ci,t, pi,t, cj,t) → 0 as pi,t ap-

proaches the static best response price for any ci,t, the solution to the differential equation

for a specific ci,t will be greater than the static best response price given ci,t except at ci.

Feature (T-i(b)): the increment above the initial value is a function of ci,t and cj,t−1 only,

and it does not depend on pj,t.

Proof: the initial value solves Πi,t
3 (ci, ci, p

∗
i,t(ci), cj,t−1) = 0, i.e., it is a static best response

when ci,t = ci to the expected price pj,t. As the numerator in the differential equation,

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1), is independent of pi,t and Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1) depends only on the

increment of pi,t above the intercept, the increment depends only on ci,t and (possibly)

cj,t−1.
37

Feature (T-iii): the effect of cj,t−1 on the increment only comes through its effect on i’s belief

about the distribution of cj,t+1.

Proof: cj,t−1 affects pj,t and i’s period t belief about the distribution of cj,t+1, which will

affect i’s expectation of pj,t+1 . Given T-i(b), pj,t does not affect the increment. From

Lemma 1 (L-ii), at the start of period t + 1, the expectation of pj,t+1 will depend only on

37The proof of (MT-ii) shows that Πi,t
3 only depends on the increment of pi,t above the static best response

price for ci,t (not the initial value which is the best response for ci). However, given linear demand, static
best responses are given by

p∗∗i,t =
ai

2b1,i
+
ci,t
2

+
b2,i
2b1,i

pj,t

so the increment of the static best response price above the static best response for ci,t =ci only depends on
ci,t−ci.
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cj,t (revealed by j’s period t price) and ĉi,t. Therefore the only effect that cj,t−1 can have on

the period t increment, which is set before pj,t is revealed, is that it affects i’s beliefs about

the distribution of cj,t+1.

Feature (T-iv): (a) the pricing function is increasing and continuous in ci,t.

Proof: (a) as Πi,t
2 (ci,t, ci,t, pi,t, cj,t−1) > 0 and Πi,t

3 (ci,t, ci,t, pi,t, cj,t−1) < 0 above the static best

response price, the pricing function must be increasing in ci,t.

Single-Crossing.

Condition (MT-vi): we need to show that, in the graph of (ĉi,t, pi,t),
Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

is ei-

ther strictly increasing or decreasing in ci,t. This amounts to showing that
∂

Π
i,t
3 (ci,t,ĉi,t,pi,t,cj,t−1)

Π
i,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t

is either positive or negative within the graph of (ĉi,t, pi,t)

∂
Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

Πi,t
2 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
=

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

∂Πi,t
3 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci,t
−Πi,t

3 (ci,t, ĉi,t, pi,t, cj,t−1)
∂Πi,t

2 (ci,t,ĉi,t,pi,t,cj,t−1)
∂ci,t(

Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

)2

The denominator is positive. As
∂Πi,t

3 (ci,t,ĉi,t,pi,t,cj,t−1)

∂ci
= b1 > 0, and Πi,t

2 (ci,t, ĉi,t, pi,t) > 0 the
first term in the numerator is strictly positive, and does not depend on pi,t. Recognizing

that
∂pj,t+1

∂ci,t∂ĉi,t
= 0,

∂Πi,t
2 (ci,t, ĉi,t, pi,t, cj,t−1)

∂ci,t
= βb2,i

∫ cj

cj

∫ ci

ci

(p∗∗i,t+1(ci,t+1, pj,t+1)−ci,t+1)
∂pj,t+1

∂ĉi,t

∂Ψi(ci,t+1|ci,t)
∂ci,t

Ψj(cj,t|cj,t−1)dci,t+1dcj,t.

∂pj,t+1

∂ĉi,t
is positive (T-iv). With linear demand, the static mark-up, p∗∗i,t+1(ci,t+1, pj,t+1)−ci,t+1,

will decrease in ci,t+1, and given the assumptions on the densities Ψi,
∫
(p∗∗i,t+1(ci,t+1, pj,t+1)−

ci,t+1)
∂Ψi(ci,t+1|ci,t)

∂ci,t
dci,t+1 < 0, but it will be bounded.

For prices at or above the static best response price, Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) ≤ 0, but,

critically, Πi,t
3 (ci,t, ĉi,t, pi,t, cj,t−1) must be close to 0 when pi,t is not too far above the static

best response price. As the signaling price function is continuous and increasing in ci,t, and

is equal to the static best response price when ci,t =ci, it follows that
∂

Π
i,t
3 (ci,ĉi,pi)

Π
i,t
2 (ci,ĉi,pi)

∂ci
> 0 when

the interval [ci,ci] is small enough.

Therefore, from Theorem 2, the unique fully separating best response function described

above exists.

A Unique MPBE in Period t Given the Form of the Best Response Functions.
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The proof so far has chosen that, given a separating pricing strategy of j, i will have a

unique fully separating best response that takes the required form. We now show that, with

linear demand, the pair of separating functions used by i and j, given a pair ci,t−1 and cj,t−1,

as best responses to each other, will be unique (i.e., there cannot be more than one distinct

pair of best response functions that are best responses to each other).

Recall that the only effect of a change in pj,t is on the intercept of i’s pricing function.

Therefore, holding fixed strategies in future periods, a change in j’s period t strategy only

translates i’s best response pricing function upwards and downwards. It follows that there

can only be a unique equilibrium if, for both i and j, 0 <
∂p∗i,t
∂pj,t

< 1.

Proof:
dp∗i,t(ci)

dpj,t
=

b2,i
2b1,i

, which, given A1, is strictly greater than zero and strictly less than

one, as required.

Period t Pricing Function Properties, Part II.

We can now show the remaining features of the equilibrium pricing functions.

Feature (T-i(a)): the initial values (i.e., static best response prices when ci,t =ci) are contin-

uous functions of cj,t−1 and ci,t−1 only.

Proof: this follows directly from the Markovian assumption as cj,t−1 and ci,t−1 are sufficient

to determine both players’ beliefs about period t costs, and, given Theorem 3, to uniquely

determine pj,t.

In the following, we will denote the function that determines the initial value gi,t(cj,t−1, ci,t−1).

The increment above the initial value, which we will denote fi,t(ci,t, cj,t−1), is a continuous

function of ci,t and cj,t−1 only. From T-i(b), the increment does not depend on pj,t.

Feature (T-iv(b)): i’s pricing function is continuous and strictly increasing in pj,t, and feature

(T-iv(c)): i’s pricing function is continuous and strictly increasing in (i’s perception of) cj,t−1.

Proof: The equilibrium price functions have the form

p∗i,t = gi,t(ci,t−1, cj,t−1) + fi,t(ci,t, cj,t−1)
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where, as already shown, gi,t(ci,t−1, cj,t−1) is the solution to

gi,t(ci,t−1, cj,t−1) =
ai
2b1,i

+
ci

2
+

b2,i
2b1,i

pj,t(ci,t−1, cj,t−1)

which is increasing and continuous in pj,t. From the perspective of firm i, pj,t is equal to

pj,t =
aj
2b1,j

+
cj

2
+

b2,j
2b1,j

pi,t +

∫ cj

cj

fj,t(cj,t, ci,t−1)Ψj(cj,t|cj,t−1)dcj,t

where the continuity of the increment f and the conditional density Ψj(cj,t|cj,t−1), and the

properties that (i) fj,t(cj,t, ci,t−1) is increasing in cj,t, and (ii) the integral is increasing in

cj,t−1 means that pj,t is continuous and increasing in cj,t−1, holding pi,t fixed. But as pi,t

is also increasing, and continuous, in pj,t and vice-versa, both pricing functions will also be

increasing and continuous in both ci,t−1 and cj,t−1.

Strategies in Period T .

It remains to show that strategies in the final period have a form that will lead to the

type of separating equilibrium strategies described above in period T − 1. The required

features are that:

� the period T equilibrium pricing function of firm i is continuous in ci,T , ci,T−1 and

cj,T−1; and,

� the expected value pi,T is increasing in cj,T−1.

In period T , both firms will use static optimal strategies given their beliefs about their

rival’s previous price. Therefore

p∗i,T =
ai
2b1,i

+
ci,T
2

+
b2,i
2b1,i

pj,T

where

pj,T =
aj
2b1,j

+
b2,j
2b1,j

pi,t +
E(cj,T |cj,T−1)

2

and solving these equations simultaneously gives

pj,T =

(
aj

2b1,j
+

aib2,i
4b1,jb1,i

)
+

b2,jE(ci,T |ci,T−1)

4b1,j
+

E(cj,T |cj,T−1)

2(
1− b2,ib2,j

4b1,ib1,j

)
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so

p∗i,T =
ai
2b1,i

+
ci,T
2

+
b2,i
2b1,i


(

aj
2b1,j

+
aib2,i

4b1,jb1,i

)
+

b2,jE(ci,T |ci,T−1)

4b1,j
+

E(cj,T |cj,T−1)

2(
1− b2,ib2,j

4b1,ib1,j

)
 .

Given the form of Ψi and Ψj (A4), p
∗
i,T will be continuous in ci,T , ci,T−1 and cj,T−1, and pj,T

is increasing in ci,T−1, as required.
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D Empirical Application: The Effects of the Miller-

Coors Joint Venture (MCJV)

This Appendix describes the data used in our analysis, as well as additional analysis that

is not presented in the text. Readers are referred to Miller and Weinberg (2017) for more

background on the JV as well as more details concerning the data/sample selection etc..

D.1 The Joint Venture.

The MC JV, announced in October 2007, effectively merged the U.S. brewing, marketing and

sales operations of SABMiller (Miller) and MolsonCoors (Coors), the second and third largest

U.S. brewers. The Department of Justice (DOJ) decided not to challenge the transaction

in June 2008 because it expected “large reductions in variable costs of the type that are

likely to have a beneficial effect on prices”.38 For example, production of Coors at Miller

breweries around the country would lower the JV’s transportation costs (Ashenfelter, Hosken

and Weinberg (2015)).

MW show that, at a national level, the real prices (i.e., deflated by the CPI-U price

index) of the most popular domestic brands, such as Bud Light (BL), Miller Lite (ML) and

Coors Light (CL), increased after the JV, relative to the prices of imported brands, such

as Corona Extra and Heineken, which MW use as controls for industry-wide cost shocks.

Regressions in Appendix D.4 quantify these price increases to lie between 40 cents and a

dollar per 12-pack, or 3%-6%, depending on the specification. We will proceed assuming

that MW’s interpretation that the relative price increase was a causal anticompetitive effect

of the JV is correct.39

An important feature of the relative price change is that AB’s prices increased as much

as those of Miller and Coors. If AB’s marginal costs were unaffected by the JV, this pattern

is inconsistent with static CI Nash pricing, as a static best response function would predict

that AB should have responded to any JV price increase by raising its prices by a smaller

amount.

D.2 IRI Data.

The data comes from the beer category of the IRI Academic Dataset (Bronnenberg, Kruger

and Mela (2008)). The underlying data is at the weekly UPC-store-level from 2001 to 2011.

38Department of Justice press release, 5 June 2008.
39This interpretation is complicated by how the Great Recession may have affected demand and the fall

in the deflator, from 220.0 in July 2008 to 210.2 in December 2008, at exactly the same time that the merger
was being consummated.
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We only use data from grocery stores.

We use different samples at different points of our analysis. For example, when we

extend MW’s demand and conduct parameter analysis, we use their samples, whereas when

we calibrate our model we use a sample that we view as appropriate. For example, MW

exclude sales of cans and bottles in 18-packs. These are unimportant for most brands, but

account for more than 20% of volume sold for the three domestic flagship brands (Bud Light

(BL), Miller Lite (ML) and Coors Light (CL)) so we do not want to exclude them. We also

stop our pre-JV sample at the time that the JV was announced, excluding the period of the

DOJ’s investigation when ML prices dropped dramatically.

D.2.1 Data Selection for the Demand and Conduct Analysis (presented in Ap-

pendices D.11 and D.12).

We follow MW in using the following selection of data.

� selection of markets: 39 geographic (IRI defined) regional markets excluding (e.g.,

because they lack other types of data that will be used in demand estimation, or are

viewed as having too few beer sales) the following markets with some stores selling beer

in the data: Harrisburg/Scranton; Philadelphia; Providence RI; Tulsa; Minneapolis-

St. Paul; Oklahoma City; Salt Lake City; Kansas City; New England; Pittsfield; Eau

Claire, WI.

� brands: 13 brands, which are BL, ML, CL, Budweiser, Miller Genuine Draft, Miller

High Life, Coors, Corona Extra, Corona Light, Heineken, Heineken Premium Light,

Michelob Ultra, Michelob Light.

� pack sizes: packages of cans and glass bottles containing the equivalent of 6, 12, 24

and 30 12oz. servings. 24 and 30-packs are aggregated into a single “large” size. Prices

are calculated as total dollars sold divided by volume in 12-pack equivalents.

� product: a product is a brand × pack size (6-pack, 12-pack, “large”) combination.

� time periods: for demand and supply estimation, data from January 2005 to Decem-

ber 2011 is used, but months from June 2008 to May 2009, i.e., the period immediately

after the JV was consummated, are excluded. Monthly data is created by allocating

individual days within a week to their correct month, and assuming that sales within a

week are spread equally across the days in the week, before aggregating to the monthly

level.
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� distances and diesel prices: we use MW’s estimated distance from the brewery or

port (for Heineken) to the market, measured in thousands of miles. Monthly diesel

prices come from the U.S. Energy Information Administration.

� income data: the random coefficients models are estimated using data on household

income taken from the 2005-2011 PUMS samples of the American Community Survey

(ACS). We use the same samples as MW to estimate demand.

� deflator: when using real prices, or real diesel prices, they are deflated to January

2010 levels using the CPI-U All Urban Consumers-All Items price index.

The following additional variables are defined:

� market size: for each market, market size is defined as 150% of the maximum of

the total sales, measured in 12-pack equivalents, of all of the brands listed above plus

23 others (including popular brands such as Busch and Busch Light) in the package

sizes/types that are being used. When we estimate demand using weekly data, we

use an alternative definition that defines demand as 150% of the sum of the maximum

sales across the stores observed in the sample that week.

� distance measure: the distance measure is constructed by multiplying deflated diesel

prices by the driving distance from the brewery, or port in the case of Heineken, to the

market.

� demand instruments: to estimate demand it is necessary to define instruments for

a product’s price and its share of volume sold among the products in its nest. MW use

the following instruments:

– the product’s own distance measure (iv-1)

– the sum of the distance measures for all of the products in the nest (iv-2)

– the number of products in the nest (iv-3)

– a dummy for domestic products after the JV (iv-4)

– (iv-2) and (iv-3) interacted with a dummy for products produced by Miller, Coors,

AB or MillerCoors

– (iv-2) and (iv-3) interacted with a dummy for products produced by AB

When we estimate demand allowing for a flagship nest and an “other brand” nest, (iv-1)

and (iv-4) are interacted with a dummy for flagship products, and the other instruments
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are defined at the nest level (e.g., adding over all products in the same nest, rather than

all products). However, all three package sizes are available for all flagship products in all

markets, so, for the flagship nest, the (iv-3) instruments are dropped due to collinearity.

D.2.2 Data Selection for the Calibration of Our Model.

For our calibration we depart from MW’s selection in the following aspects.

� selection of markets: we use observations from all IRI market-weeks where we

observe the flagship brands being sold in at least 5 stores. This gives us 45 markets

before the JV, although some markets do not meet the criteria in some weeks. The

markets that are added back are: Eau Claire, Kansas City, Minneapolis, New England,

Oklahoma City, Salt Lake City. Boston never meets the 5 store criterion after the JV

so it is excluded from our estimates of post-JV price dynamics.

� pack sizes: packages of cans and glass bottles containing the equivalent of 6, 12, 18,

24 and 30 12oz. servings. These sizes are treated separately, but prices are converted

into 12-pack equivalents.

� time periods: we use the months from January 2001 to October 2007 for the pre-JV

period. The months after May 2009, until December 2011, are the post-JV period.

D.3 Brand Shares and Retail Prices.

Table D.1 lists the 20 brands with the largest sales by volume in 2007, together with addi-

tional brands that MW include in their analysis. The table lists market shares and average

nominal prices (per 144 oz, the volume in a standard 12-pack) in 2007 and 2011.

Most domestic brands are differentiated from imports by being sold primarily in larger

packs and at lower prices. The relative prices of domestic brands increased after 2007,

but, although CL gained some share at ML’s expense, the domestic brewers’ market shares

remained stable. For example, AB’s volume share was 41.3% in 2007, 41.5% in 2009 and

39.6% in 2011, with light beer shares of 50.0%, 50.8% and 50.6% respectively.40

D.4 Effects of the Joint Venture on Prices.

MW present estimates of the effects of the joint venture on prices. We present complementary

estimates here, which can be compared to the price increases predicted by our calibrated

40Appendix D.5 presents a figure showing the evolution of market shares over this period. The post-JV
decline in the shares of several non-flagship domestic brands reflected a continuation of pre-existing trends.
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Table D.1: Highest-Selling Beer Brands in 2007 with Ownership, Share and Average Nominal
Retail Prices per 12-Pack.

2007 2011
Brand Company Packs % 18+ Mkt. Share Price Mkt. Share Price

Bud Light∗,† AB 10 72.5% 15.7% $8.29 15.7% $8.92
Miller Lite∗,† M 10 75.1% 10.0% $8.11 8.4% $8.73
Coors Light∗,† C 10 74.8% 8.3% $8.36 9.4% $8.98
Budweiser† AB 10 70.8% 7.7% $8.30 6.5% $9.00
Corona Extra†,♢ GM 5 15.6% 4.1% $13.88 3.9% $13.46
Natural Light∗ AB 7 68.6% 3.9% $6.01 3.2% $7.15
Busch Light∗ AB 9 78.4% 2.8% $6.07 2.5% $6.96
Miller High Life† M 9 54.1% 2.4% $6.33 2.2% $7.21
Heineken†,♢ H 7 12.8% 2.3% $14.06 2.3% $13.86
Miller Genuine Draft† M 10 67.0% 2.3% $8.26 1.3% $8.94
Michelob Ultra∗,† AB 9 27.4% 2.1% $10.05 2.4% $10.51
Busch AB 9 70.0% 1.9% $6.08 1.6% $7.05
Keystone Light∗ C 6 81.4% 1.4% $5.83 1.5% $7.03
Budweiser Select AB 9 62.0% 1.3% $8.37 0.7% $8.76
Milwaukee’s Best Light∗ M 6 66.8% 1.3% $5.37 0.8% $6.19
Corona Light∗,†,♢ GM 3 2.3% 1.2% $14.23 1.3% $13.79
Tecate♢ H 7 66.3% 1.2% $8.65 1.2% $9.04
Natural Ice AB 7 51.3% 1.1% $5.96 0.9% $7.19
Pabst Blue Ribbon SP 9 49.3% 1.0% $6.26 1.4% $7.53
Milwaukee’s Best M 5 61.8% 0.8% $5.46 0.4% $6.46
Coors† C 10 73.3% 0.8% $8.44 1.0% $8.84
Michelob Light∗,† AB 7 29.3% 0.7% $9.76 0.3% $10.72
Heineken Prem. Light∗,†,♢ H 5 1.9% 0.6% $14.28 0.5% $14.18

Notes: the table lists the 20 highest-selling brands plus additional brands in MW’s sample. Market shares and
prices are based on all units sold in packs equivalent to 6, 12, 18, 24, 30 and 36 12oz servings. “Packs” is the num-
ber of 2007 bottle/can-pack size combinations for 6, 12, 18, 24 and 30 packs, as 36 packs are rare. “% 18+ ” is the
percentage of 2007 volume sold in the packs of more than 18 cans or bottles. 2007 companies are: AB=Anheuser-
Busch, M=SABMiller, C=MolsonCoors, GM=Grupo-Modelo, H=Heineken, SP=S&P. Prices are nominal prices
per 12-pack equivalent (i.e., total dollars sold in all pack sizes divided by total volume in 144oz. units). ∗=light
beers, †=included in MW’s sample, ♢=imports.
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model.

An observation in our analysis is a brand-market-month, where real prices are calculated

at the brand level by adding up the total sales in package sizes equivalent to packs of 6,

12, 18, 24, 30 or 36 12oz. containers (we include 36-packs in this regression where they

are available, although they account for a small proportion of sales). The sample contains

the following brands: BL, ML and CL (i.e., the domestic flagship brands), Corona Extra

and Heineken which we will treat as providing controls for industry-wide shocks, as MW

assume. The sample runs from 2001 to 2011, and includes the period immediately before

and following the JV. We consider prices defined using all store-UPC-week observations in

the appropriate sizes, and prices that are defined excluding store-UPC-week observations

that are identified as being sold at temporary price reduction prices. We use both definitions

as our analysis of price dynamics will use price series where price reductions are removed.

Table D.2 presents the results from six specifications that differ depending on whether

price reductions are included, we use prices in levels or logs and whether brand-time trends

are included. The reported coefficients are the coefficients on Post-JV dummies for the

domestic flagship brands, so that they measure the increase in real prices relative to the two

imported brands. The estimated price increases vary across the columns, but lie in the range

from just over 40 cents to one dollar, or 3% to 6%, and the price increases are smaller when

we include brand-specific time trends.

We will assume that these relative price changes reflect causal, anticompetitive effects

of the JV, which can be compared to the predictions of the effects of an unanticipated,

exogenous merger in our model. Of course, this interpretation does depend on assumptions,

in particular the validity of using the prices of imported brands as controls for cost changes.

D.5 Changes in Market Shares Around the Joint Venture.

Our preferred demand system for the calibration assumes that there is limited substitution

between the flagship domestic brands, brands that are not owned by the leading domestic

firms or the outside good of not drinking beer, so that post-JV price increases of the observed

size do not reduce demand of the leading domestic brands very much. This is consistent with

some of our estimates in Table D.6, although MW’s specifications imply more substitution.

Figure D.1 shows the volume-based market shares of the different brands included in the

demand analysis (for this purpose, we define market share based on the shares of all beers

in the IRI data, not just the ones that MW include in their demand model). We aggregate

non-flagship brands based on their pre-JV ownership. The main feature of the figure is that

while the real prices of the flagship brands and the other domestic brands increase after the
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Table D.2: Estimates of the Effects of the Joint Venture on Prices.

(1) (2) (3) (4) (5) (6)
$ Price/ Log(Price/ $ Price/ Log(Price/ $ Price/ Log(Price/
12 Pack 12 Pack) 12 Pack 12 Pack) 12 Pack 12 Pack)

Price Reductions incl. incl. incl. incl. excl. excl.

Post-JV Brand Dummies
Bud Light 0.853 0.046 0.428 0.046 0.485 0.032

(0.049) (0.005) (0.064) (0.005) (0.080) (0.007)
Miller Lite 1.024 0.065 0.415 0.045 0.492 0.034

(0.058) (0.006) (0.071) (0.006) (0.070) (0.006)
Coors Light 0.945 0.056 0.438 0.048 0.542 0.040

(0.060) (0.006) (0.068) (0.006) (0.076) (0.007)

Brand Time Trends N N Y Y Y Y

Observations 25,740 25,740 25,740 25,740 25,740 25,740
R2 0.971 0.973 0.972 0.973 0.970 0.970

Notes: the reported coefficients are on domestic brand × post-JV interactions. The brands included are
those listed, plus Corona Extra and Heineken. Observations at the brand-market-month level, aggre-
gating across packages containing the equivalent of 6, 12, 18, 24, 30 or 36 12oz. containers in cans or
glass bottles. All specifications include market-brand and time period fixed effects. Standard errors in
parentheses clustered on the market.

JV, brand market shares are stable, except for CL gaining share at the expense of ML, a

change that does not appear to be driven by prices. The shares of non-flagship Miller and

AB brands do fall after the JV, but this appears to reflect trends that existed before the JV.

Imported beers do not appear to gain share.

D.6 Price Correlations Across Brands Before and After the JV.

Our model assumes that each firm sets a single price per period, including MC after the JV,

whereas the domestic brewers have large portfolios of brands that are sold in many different

packages. In this Appendix we show that the prices of brands sold by the same brewer are

highly correlated, and that Miller and Coors brand prices are more correlated after the JV.

This provides some comfort that our simplifying assumption is not too misleading.

Table D.3 reports the correlations of market-week prices of 12-packs of the flagship

brands, plus Budweiser, Miller Genuine Draft and Coors, before and after the JV. It is

noticeable that the prices of products with the same owner (e.g., BL and Budweiser) are

highly correlated and that the prices of Miller and Coors products become more correlated

after the JV.

The reported correlations are high partly because beers retail at different prices in dif-
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Figure D.1: Brand Market Shares Around the Joint Venture

Notes: Budweiser, Michelob Ultra and Michelob Light aggregated into “Other AB”; Miller Genuine

Draft and Miller High Life aggregated to “Other Miller”; Coors is “Other Coors”; Heineken and

Heineken Premium Light are “Heineken” and Corona Extra and Corona Light are “Corona”. Shares

based on volume sold in packages equivalent to 6, 12, 18, 24, 30 and 36 12oz containers.

ferent markets. We can also calculate correlations by regressing the price of one brand on

the price of another brand, and market and week fixed effects. These results also show sig-

nificant increases in correlations of Miller and Coors products after the JV: for example, the

coefficient on the CL price when the ML price is the dependent variable increases from 0.68

before the JV to 0.84 after the JV. Patterns in the table and the regressions are similar if

we use prices defined to exclude temporary price reductions.

D.7 Price Series of Domestic Flagship 12-Packs Nationally, and
in Los Angeles and Seattle.

Figure 6 in the main text plots the monthly time series of average nominal retail prices for

12-packs of Bud Light, Miller Lite and Coors Light. The averages are calculated by dividing

total dollar sales (excluding sales at temporary store price reductions) by the number of units

sold. Price volatility is a clear feature of the time-series, and it is arguably a clearer feature
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Table D.3: Cross-Brand Correlations in Prices for 12-Packs

Pre-JV
(1) (2) (3) (4) (5) (6)

(1) Bud Light 1
(2) Miller Lite 0.891 1
(3) Coors Light 0.891 0.889 1
(4) Budweiser 0.994 0.892 0.893 1
(5) Miller Genuine Draft 0.872 0.973 0.870 0.872 1
(6) Coors 0.804 0.812 0.916 0.807 0.804 1

Post-JV
(1) (2) (3) (4) (5) (6)

(1) Bud Light 1
(2) Miller Lite 0.857 1
(3) Coors Light 0.874 0.967 1
(4) Budweiser 0.995 0.856 0.872 1
(5) Miller Genuine Draft 0.840 0.957 0.940 0.839 1
(6) Coors 0.825 0.934 0.959 0.824 0.916 1

Notes: the correlations are for brand-market-week average prices of 12-packs,
before the announcement of the JV and after its consummation. Average prices
are calculated including price reductions. Correlations for brands with the same
owner are slightly higher if price reductions are excluded.

than the post-JV price increase. This motivates our use of a model where price volatility is

a feature of equilibrium pricing.

However, one might be concerned that volatility is partly driven by how average prices

have been calculated. Therefore, Figures D.2-D.4 show price series calculated in three dif-

ferent ways:

� nominal prices, including temporary store price reductions;

� real (deflated) prices, excluding temporary store price reductions; and,

� nominal average prices where the same weight (rather than volume share weights) are

placed on each store that is in the sample.

The third approach is motivated by the possibility that, at the store-level, prices do not

change, but that volatility in share-weighted average prices is due to the number of units sold

in high-priced and low-priced retail stores varying over time. While the different calculations

do change the level of average prices, volatility remains.
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Figure D.2: Real Prices for 12-Packs of the Domestic Flagship Brands Nationally and in
Two Regional Markets Around the JV. Prices are deflated monthly average prices excluding
sales indicated to be made at temporary price reductions.

Figure D.3: Nominal Prices for 12-Packs of the Domestic Flagship Brands Nationally and
in Two Regional Markets Around the JV. Prices are monthly average prices including sales
indicated to be made at temporary price reductions.
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Figure D.4: Nominal Average Store Prices for 12-Packs of the Domestic Flagship Brands
Nationally and in Two Regional Markets Around the JV. Reported values are unweighted
average monthly prices average across stores, where monthly average prices are calculated
excluding sales made at temporary price reductions.

D.8 Alternative Specifications of Price Serial Correlation Regres-

sions

Text Table 5 shows a regression of market-week average prices on the lagged values of prices

for the three flagship brands, where average prices are measured excluding price reductions.

Fixed effects for the set of stores that are in the sample in a given market-week control

for cross-store differences in pricing. These regressions are the pooled market version of the

market-specific regressions that we run to estimate serial correlation statistics that we match

during our baseline calibration, which uses weekly data and excludes price reductions.

Panel (a) of Table D.4 repeats the regressions that are in the text. The remaining panels

change the sample. For example, panel (c) includes temporary price reduction observations

in the calculation of average prices. The estimated serial correlation parameters fall in

magnitude, which is consistent with sales lasting one week and being proceeded and followed

by higher regular prices. Serial correlation is higher if we focus only on 12-packs (panel

(b)). Panel (d) repeats panel (a) using monthly prices. As the set of stores often varies

between months, we include market, rather than group-of-store, fixed effects (equivalent

regressions will be used for our monthly calibrated model specification). In this case, the
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Figure D.5: Estimated Pre-JV Price Dynamics and the Combined Market Shares of AB,
Miller and Coors.

Notes: The estimated univariate regression coefficients, with standard errors in parentheses, for

panel (a) are BL: 0.011 (0.226) + 0.558C3 (0.288), R2 = 0.080; ML : 0.044 (0.192) + 0.465C3

(0.245), R2=0.077; CL : -0.025 (0.215) + 0.568C3 (0.278), R2=0.091; and for panel (b): -0.039

(0.046) + 0.120C3 (0.058), R2=0.088.

serial correlation parameters are larger, but further investigation reveals that this happens

primarily due to the change in the fixed effects, as cross-store heterogeneity in retail prices

is no longer controlled for.41

While our calibration does not seek to match cross-market heterogeneity, we note that

the serial correlation coefficients show a pattern across markets that is consistent with our

model. Using data simulated from our model, we typically estimate higher serial correlation

parameters in price regressions when we change the parameters to induce larger signaling

effects on prices, by, for example, reducing diversion to the outside good. Given any type of

logit or nested logit preferences, diversion to other brands will tend to be lower when, as a

group, the signaling brands have a higher market share. Figure D.5(a) shows scatter plots

41We have estimated monthly regressions including set of store fixed effects and dropping market-months
where the set of stores changes within months. This causes the number of observations to drop dramatically:
for example, the number of observations in the BL regression falls to 2,806, and the estimated coefficient
on pBL

t−1 falls to 0.318. For some individual markets, there is not enough data to estimate serial correlation
coefficients.

43



Table D.4: Pre-JV AR(1) Price Regressions Using Flagship Market-Pack Size-Week or -
Month Data

(a) Week, Price Reductions Excluded, (b) Week, Price Reductions Excluded,
All Pack Sizes, Fixed Effects for Set of Stores 12 Packs Only, Fixed Effects for Set of Stores

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.451 0.056 0.043 pBL,t−1 0.489 0.071 0.028
(0.033) (0.017) (0.010) (0.032) (0.026) (0.018)

pML,t−1 0.030 0.409 0.016 pML,t−1 0.062 0.505 0.028
(0.011) (0.036) (0.014) (0.013) (0.038) (0.012)

pCL,t−1 0.027 0.021 0.461 pCL,t−1 0.004 0.016 0.549
(0.012) (0.015) (0.040) (0.012) (0.015) (0.043)

Observations 36,659 36,670 36,700 Observations 10,829 10,817 10,828
R-squared 0.979 0.972 0.978 R-squared 0.964 0.945 0.957
Mean Price ($) 10.08 9.95 9.94 Mean Price ($) 10.30 10.22 10.19
SD residuals ($) 0.184 0.221 0.197 SD residuals ($) 0.144 0.183 0.163

(c) Week, Price Reductions Included, (d) Month, Price Reductions Excluded,
All Pack Sizes, Fixed Effects for Set of Stores All Pack Sizes, Fixed Effects for Markets

(1) (2) (3) (1) (2) (3)
pBL,t pML,t pCL,t pBL,t pML,t pCL,t

pBL,t−1 0.287 0.036 0.020 pBL,t−1 0.646 0.097 0.091
(0.027) (0.013) (0.013) (0.025) (0.015) (0.012)

pML,t−1 0.045 0.322 0.010 pML,t−1 0.074 0.601 0.066
(0.009) (0.027) (0.012) (0.015) (0.027) (0.014)

pCL,t−1 -0.023 -0.049 0.267 pCL,t−1 0.100 0.097 0.682
(0.013) (0.020) (0.039) (0.010) (0.016) (0.025)

Observations 37,449 37,431 37,442 Observations 13,972 13,973 13,975
R-squared 0.939 0.941 0.942 R-squared 0.974 0.971 0.974
Mean Price 9.79 9.67 9.68 Mean Price 10.08 9.95 9.94
SD residuals 0.337 0.342 0.336 SD residuals 0.210 0.229 0.216

Notes: regressions also include time period*pack size interactions and use pack sizes containing volumes
equivalent to 6, 12, 18, 24 and 30 12 oz. containers. Data from January 2001 to the announcement of the JV.
Market or store fixed effects described in the label to each panel. Standard errors, clustered on the market,
are in parentheses. The SD residuals statistic is the standard deviation of the residuals from the regression.
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of the estimated market-level serial correlation parameters for BL, ML and CL against the

share of all beer sales accounted for AB, Miller and Coors in 2007. Figure D.5(b) shows

a similar plot for the average of the six cross-brand coefficients. In both cases there is a

positive, and, using a regression analysis, a statistically significant, relationship, consistent

with our simulations.42

D.9 Serial Correlation of Marginal Costs Implied by MW’s Con-

duct Supply Model

The signaling effects in our model are caused by firms having a serially correlated component

of their marginal cost that is not observed. While we can not tell what components of

marginal costs are observed, Figure D.6 show that the (real) marginal cost residuals (i.e.,

the parts not explained by the included controls) in MW’s monthly RCNL-1 demand and

supply model are highly serially correlated. The panels show the path of the residuals for 12

packs of the flagship domestic brands in two regional markets and when we average across

markets. The gap in the middle of the plots reflects MW’s exclusion of the 12 months

following the consummation of the MC JV.

D.10 Alternative Specifications of Cost Pass-Through Regressions

Text Table 4 presents regressions where real prices per 12-pack equivalent are regressed

on trucking distance measures for the brewer. We find a change in the pass-through of

transportation costs, proxied by the trucking distance, after the JV, and that these variables

are more significant in explaining cross-market increases in domestic prices, relative to the

prices of imports, after the JV than the HHI and change in distance for Coors variables

included by MW. The sample in these regressions consists of the 13 brands in the MW

sample, from the same 39 markets, but using all pack sizes (6, 12, 18, 24, 30 and 36 packs),

although, following MW, we aggregate 24 and 30 packs. The coefficients change very little

if we exclude 36 packs, which are the rarest pack size. We use observations from January

2001 to December 2011, excluding June 2008 to May 2009, the period immediately after the

JV was consummated. This period is dropped by MW in some regressions but not others.

These results are consistent with what our model would predict if the per mile efficiency of

a brewer’s distribution network is private information.

Table D.5 repeats the same regressions but using log(real prices per 12-pack equivalent)

as the dependent variable. The results are similar to those for prices in levels, with the

42We also find positive, statistically significant relationships when we look at individual cross-brand coef-
ficients.
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Figure D.6: Marginal Cost Residuals for Flagship Brand 12-Packs in Three Markets. Panels
(a)-(c) show the monthly marginal cost residuals implied by MW’s RCNL-1 demand and
supply model. MW exclude the 12 months following consummation of the merger.
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Table D.5: Price Regressions: Log(Real Price Per 12-Pack) for all Pack Sizes

(1) (2) (3) (4) (5) (6) (7)
Distance Own Own × Own Min. Own Min.
Measure Diesel Domestic Domestic

Distance Measure ×
AB -0.027 -0.005

(0.015) (0.006)
Imports 0.040 0.013

(0.016) (0.003)
Coors 0.018 0.010

(0.006) (0.002)
Miller -0.004 0.003

(0.011) (0.004)
Post-JV × Own Distance ×
AB 0.053 0.016 0.048 0.082 0.019 0.058

(0.032) (0.010) (0.032) (0.023) (0.031) (0.027)
Imports -0.013 -0.007 -0.009 0.025 -0.018 0.005

(0.014) (0.003) (0.011) (0.017) (0.012) (0.020)
Coors 0.068 0.020 0.071 0.075 0.06 0.049

(0.014) (0.005) (0.014) (0.021) (0.014) (0.026)
Miller 0.088 0.026 0.086 0.096 0.076 0.071

(0.017) (0.005) (0.017) (0.025) (0.015) (0.029)
Post-JV ×
Reduction Coors Distance -0.036 -0.041 -0.034

(0.014) (0.014) (0.015)
Mkt HHI Increase Due to JV 0.111 0.111 0.098

(0.201) (0.194) (0.208)
Post-JV × Domestic ×
Reduction Coors Distance -0.011 0.008 0.001

(0.011) (0.011) (0.013)
Mkt HHI Increase Due to JV 0.434 0.409 0.312

(0.223) (0.208) (0.186)

Fixed Effects Pre/Post× Pre/Post× Product× Product× Product× Product× Product×
Product Product Market Market Market Market Market
Market Market Pre/Post× Pre/Post× Pre/Post× Pre/Post × Pre/Post×

Product Product Product Product Product

Observations 191,909 191,909 191,909 191,909 191,909 191,909 191,909
R-squared 0.918 0.918 0.953 0.953 0.953 0.954 0.954

Notes: standard errors, clustered on the market, in parentheses. Date fixed effects in all specifications.

47



post-JV own and minimum distance coefficients being significant and large for the domestic

brands, indicating that post-JV price increases were larger in markets that were further away

from domestic breweries even when the JV had no effect on travel distances.

D.11 Demand.

We estimate several demand specifications using the same selection of data that MW use. We

use the demand parameters as an input into our re-examination of the conduct and super-

markup models presented by MW and MSW, and to support the simpler parameterization

of demand that we use when calibrating the supply-side parameters of our model.

Table D.6 reports five sets of demand estimates (the first three will be used in Appendix

D.12). For these specifications, we follow MW as closely as possible in the choice of data,

instruments and controls, except that we use optimal GMM for the nested logit models as

doing so affects the estimates.43 The first three columns contain one nested logit specification,

using monthly data, and two random coefficients nested logit (RCNL) specifications, where

the 13 MW brands are all included in a single inside nest, and preferences vary with income.

The remaining columns estimate nested logit models using monthly and weekly data (we will

use weekly price changes when estimating the cost parameters) where the flagship BL, ML

and CL products are grouped into a “flagship nest”, and the remaining products are placed

in an “other beer” nest with a different nesting coefficient. The flagship nesting coefficients

are larger, consistent with these brands being particularly close substitutes.

The table reports several implied statistics for each specification, including the average

(across market-time periods) ML brand elasticity (i.e., the effect on demand when all ML

prices increase), the proportion of lost demand that switches to other flagship products when

a flagship price is increased, and the average, across pre-JV observations, predicted change in

flagship sales when the prices of all domestic products increase by 75 cents, which is within

the range of the observed post-JV price change.

The statistics vary across the specifications. Recall that domestic/flagship brand market

shares fall very little, if at all, after the JV in spite of the price increase (Appendices D.3-

D.5). Among the five specifications, this is most consistent with the estimates in columns

(4) and (5). In our calibration, we will therefore assume a price elasticity and a diversion

rate which is consistent with the estimates in these columns.

43None of the specifications yield exactly the same estimates as MW, although the monthly RCNL coeffi-
cients are almost identical.
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Table D.6: Estimates of Demand

(1) (2) (3) (4) (5)
Nested Logit RCNL RCNL Nested Logit Nested Logit

Nests All Beer All Beer All Beer Flagship/Other Flagship/Other
Data Freq. Monthly Monthly Quarterly Monthly Weekly

Real Price Coefficient -0.056 -0.083 -0.099 -0.073 -0.047
(2010 dollars) (0.017) (0.014) (0.014) (0.018) (0.011)
Nesting Coefficients

Single All Brand Nest 0.741 0.838 0.831 - -
(0.051) (0.039) (0.039)

Two Nests
Domestic Flagship - - - 0.838 0.898

(0.049) (0.040)
Other Brands - - - 0.634 0.815

(0.047) (0.037)
Income Coefficients (RCNL Models)
*constant - 0.014 0.014 - -

(0.005) (0.005)
*price - 0.001 0.001 - -

(0.000) (0.000)
*calories - 0.004 0.004 - -

(0.002) (0.002)

Median Product -2.31 -4.71 -5.41 -2.51 -3.12
Elasticity

Mean ML Brand -1.66 -3.68 -4.22 -3.06 -3.09
Price Elasticity

Mean Flagship 0.41 0.48 0.47 0.83 0.90
Diversion

% Change in Flagship -5.20% -8.24% -9.65% -4.30% -2.20%
Sales Given 75¢
Domestic Price Rise

Observations 94,656 94,656 31,777 94,656 405,004

Notes: all specifications include time period and product (brand*size) fixed effects, and use data from Jan
2005 to Dec 2011, excluding June 2008 to May 2009. All estimates use two-step optimal GMM. Instruments
are the same as in MW for the relevant specification, apart from the two nest models where we define in-
struments for the number and distance measures for other products based on products in the same nest, and
interact instruments with a flagship brand dummy. Market size is defined as 50% more than the highest sales
observed in the geographic market for monthly and quarterly specifications. For the weekly specifications it is
estimated as 50% more than the sum of the highest sales from stores observed in the scanner data that week.
ML Brand Elasticity reflects the change in ML sales when the prices of all ML products are increased. Mean
Flagship Diversion is the average proportion of lost sales that go to other flagship products (i.e., BL, ML and
CL products) when the price of a flagship product is increased. The change in flagship sales after a 75 cent
price rise is the average across pre-JV observations change in total flagship sales when the prices of all domes-
tic products are increased by 75 cents. Standard errors, clustered on the geographic market, in parentheses.
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D.12 Tests of Collusive Models of Pricing in the Beer Industry.

Some people have suggested that, even if our model can explain why prices rose after the MC

JV, CI theories of tacit collusion provide pre-existing and satisfactory explanations. This

is true in the sense that folk theorems imply that one could likely construct some CI tacit

collusion model that would be able to explain any feature of prices almost perfectly. However,

the specific models advanced by MW and MSW can be tested. MW provide a supply-side

framework where they account for the increase in prices by a “change in conduct”, from

assumed Bertrand Nash pricing before the JV to partial joint-profit maximization after the

JV, where the latter type of conduct is viewed as reflecting tacit collusion. We will show

that, using alternative identifying assumptions, we can typically reject the hypothesis of

Nash pricing before the JV while, contrary to MW’s assumption, not necessarily rejecting

a hypothesis that there was no change in conduct after the JV. MSW propose a specific

model of tacit collusion where the domestic firms charge market-year specific markups above

Bertrand Nash prices (supermarkups). We show that the data rejects this model.

Of course, these findings do not indicate that a model based on asymmetric information

and signaling is the “correct” model, because CI is assumed when deriving the first-order

conditions that are estimated. However, the estimates do imply that marginal costs are

serially correlated and quite volatile, a feature that plays an important role in our model.

We have also experimented with estimating conduct-model equations using data generated

from the asymmetric information model examples presented in Section 3. We find conduct

parameter estimates that are broadly consistent with those that we estimate during observed

market data in this Appendix, i.e., estimated conduct parameters are significantly greater

than zero, and may fall slightly, increase or stay roughly the same after a simulated merger.44

D.12.1 The Conduct Parameter Framework.

Our tests extend MW’s conduct parameter framework. The framework assumes that pricing

is characterized by stacked static, CI first-order conditions(
Ωmt ◦

[
∂qmt(pmt, θ

D)

∂pmt

])
(pmt − cmt) + qmt(pmt, θ

D) = 0,

where pmt, qmt and cmt are vectors of prices, quantities and (constant) marginal costs and
∂qmt(pmt,θD)

∂pmt
is a matrix of demand derivatives.

44One might ask why we do not do this exercise with data simulated from our calibrated model. The
answer is that identification of separate pre- and post-merger conduct parameters relies on cross-market or
across-time variation in the degree of substitution between different brands. However, in order to have a
manageable computational burden, our calibrated model assumes a single average or representative market.
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Ωmt is the “conduct” matrix, with (row i, column j) element Ωi,j. Ωi,j = 1 if products

i and j are owned by the same firm. Under static Nash pricing, all other elements of Ωmt

are zero. MW’s baseline specification assumes static Nash pricing before the JV, but allows

Ωi,j = κ after the JV if i and j are owned by different domestic brewers. κ = 1 is consistent

with joint profit-maximization, while 0 < κ < 1 could be interpreted as reflecting partial

internalization of pricing externalities.

Given demand estimates, MW estimate the post-JV κ using equations

pmt = Wmtγ −
(
Ωmt(κ) ◦

[
∂smt(pmt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (5)

where cimt = Wimtγ+νimt andW includes time, product (brand-size) and geographic market

fixed effects; a “distance measure” that multiplies distance to the brewery or port with real

diesel prices, and allows for the JV to realize transportation cost efficiencies by reducing

distances from the market for MC products; and, a dummy for MC products after the JV to

allow for an additional efficiency. The identifying assumption/exclusion restriction is that

the JV is assumed not to affect AB’s marginal costs. The instruments are the variables in

W and a dummy for domestic products after the JV. The post-JV κ is identified by how

much more AB’s prices increase than the increase that can be rationalized as the static best

response implied by the static CI first-order conditions.

MW’s single exclusion restriction implies that they cannot estimate separate pre- and

post-JV κs or test whether a change in conduct is the source of the price increase.45 Our

approach is to estimate separate pre- and post-JV κs by adding additional instruments and

controls. We continue to assume that imported brands use Nash pricing and that Ωi,j = 1

when i and j have the same owner. Note, however, that we will only use the model to test

MW and MSW’s assumptions and we will not interpret positive κs as evidence of “collusion”.

As shown by Corts (1999), some forms of tacit collusion may be consistent with estimates of

κ that are less than or equal to zero, and, as we noted above, one usually estimates positive

and statistically significant κs using data simulated from our model even though there is no

collusion.

Our specifications include separate pre- and post-JV product and market fixed effects in

W , so changes in price levels after the JV do not identify conduct. To understand our choice

45MW re-estimate the post-JV κ assuming, but not estimating, different pre-JV κ ≤ 0.5. These estimates
imply that κ rose after the JV, although by smaller amounts as the assumed pre-JV κ rises, as a pre-JV κ
also implies that AB would increase its prices when MC benefits from an efficiency.
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of instruments, consider the first-order condition for product i owned by AB

pimt = Wimtγ +
qimt
∂qimt

∂pimt

+
∑
j∈AB
j ̸=i

∂qjmt

∂pimt

∂qimt

∂pimt

(pjmt − cjmt) + κ
∑
k∈M,C

∂qkmt

∂pimt

∂qimt

∂pimt

(pkmt − ckmt) + νimt.

Valid instruments will be correlated with
∑

k∈M,C

∂qkmt
∂pimt
∂qimt
∂pimt

(pkmt−ckmt) (i.e., the incremental

effect of a change in i’s price on a rival’s profits), and uncorrelated with the cost unobservable

νimt. We will use alternative instruments in the specifications below.

D.12.2 Results: Estimates of Conduct Before and After the JV.

The first six columns in Table D.7 report conduct coefficients for the columns (1)-(3) de-

mand specifications in Table D.6.46 Columns (1)-(3) use the distance measures of rivals as

instruments, as they affect rivals’ margins, and, as MW already assume that a product’s

own distance measure is uncorrelated with νimt, the additional assumptions required are

minimal.47 Columns (4)-(9) use additional instruments in the form of the average value

of the demand unobservables (ξs) for rival brewers over either the pre- or post-JV period,

and the interactions of these instruments with the distance instruments.48 These additional

instruments are valid if νimt is uncorrelated with the demand unobservables of rivals’ prod-

ucts. This is a stronger assumption, although economists sometimes make an even stronger

assumption that a product’s own demand and marginal costs unobservables are uncorrelated

in order to estimate demand (MacKay and Miller (2019)). Columns (7)-(9) include linear

domestic-market-fiscal year fixed effects in W . These controls allow for possible correlations

between local preferences and costs for domestic products as a group, and cause conduct to

be identified only from within-market-year cross-brewer/-product variation. We will also use

these specifications to test the MSW model, as we explain below.

We reject Nash pricing after the JV in all nine specifications. This is, of course, consistent

46We have also estimated specifications using the two (flagship/non-flagship) nest nested logit models, and
specifications that estimate κs based only on the pricing of the flagship brands. These estimates lead us to
reject Nash pricing behavior before the JV, and the pre- and post-JV parameters are closer than those in
columns (1)-(6).

47There are eight excluded distance instruments. For AB products in market m and time t before the JV,
the (m, t) distance measure for Miller and the (m, t) distance measure for Coors are instruments. For pre-JV
Miller products, the distance measures for AB and Coors are instruments. For pre-JV Coors products, the
distance measures for Miller and AB are instruments. For AB (MC) products in market m and time t after
the JV, the (m, t) distance measure for MC (AB) is the instrument.

48Specifically, we calculate the average value of the demand residuals for the products sold by brewer b
in market m either before or after the JV, and then construct eight instruments in the same way that we
construct the instruments for distance. We average across periods because the demand unobservables are
more variable than the distance measures.
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with MW’s interpretation that there was tacit collusion after the JV. However, all of the

estimated pre-JV κs are positive, and some are significant, providing evidence against the

assumption of static CI Nash pricing before the JV. The estimates in columns (1)-(6) are

consistent with an increase in κ after the JV, but the estimates with market-year controls

suggest that conduct did not change, even though these estimates of κ are the most precise.

The plausibility of these static CI pricing models can also be assessed by looking at

what they imply for marginal costs and synergies. The lower panel of Table D.7 reports

average implied marginal costs for ML 12-packs. Less elastic demand and higher κ imply

lower marginal costs, and the (1), (4) and (7)-(9) costs are implausibly/impossibly low. The

remaining columns imply synergies for ML, which was being shipped the same distances

before and after the JV in most markets, that are higher than the 17.5% synergy for ML and

CL that we assumed for the column (1) specification of our model. Controlling for market

and time effects, the implied νimts (marginal cost residuals) are also serially correlated and

quite volatile.49 While cost volatility is certainly not inconsistent with CI, we view volatility

as suggesting that an interpretation of the data as reflecting tacit collusion requires a very

strong CI assumption: if CI is not satisfied, then, given that prices are volatile, collusion

would be hampered by the difficulty of distinguishing cheating from a conforming price set

by a low marginal cost firm.

D.12.3 MSW’s Supermarkup Model.

The conduct model is not a fully-specified model of collusion because it does not specify

the incentives that cause firms to deviate from maximizing their own profits. Some collusion

models cannot be tested using the conduct framework, but the MSW supermarkup model can

be tested. MSW assume that, every fiscal year, both before and after the JV, a price leader

suggests a “supermarkup” on top of Bertrand Nash prices that domestic brewers should

charge. If a domestic firm fails to charge the supermarkup, a punishment phase ensues, but

in a CI subgame perfect equilibrium, the suggested supermarkup will satisfy the incentive-

compatibility constraints (ICCs). Prices may increase after a merger if the ICCs are relaxed.

We can test this model by using an appropriately defined domestic product market-fiscal

year fixed effect to control for the supermarkup. If the “supermarkup on Nash” theory is

correct, estimates of conduct κ parameters should be equal to zero once the fixed effects are

included. We explain this approach in more detail before presenting the results from two

separate versions of the test.

49The rich fixed effects in columns (7)-(9) cause the νimts to jump across fiscal years, so the estimated
serial correlation falls.
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MSW assume that each fiscal year, a price leader announces market-specific incentive-

compatible markups (mmt), in dollars, above Nash prices that all domestic brewers should

charge. Foreign brands are assumed to use static Nash pricing. This implies that, given

mmt, the first-order conditions for an AB product i are given in the following expression

where p̃D = pmt − mmt for domestic products and p̃I(p̃D) are Nash equilibrium prices of

imported brands if domestic brewers charged p̃D:

pimt−mmt = Wimtγ+
qimt(p̃D, p̃I(p̃D))
∂qimt

∂pimt
(p̃D, p̃I(p̃D)

+
∑
j∈AB
j ̸=i

∂qjmt

∂pimt
(p̃D, p̃I(p̃D))

∂qimt

∂pimt
(p̃D, p̃I(p̃D))

(pjmt−mmt−cjmt)+νimt. (6)

The first-order conditions for an imported product k (say a Heineken (H) product) are

the standard static first-order conditions

pkmt = Wkmtγ +
qkmt(p)
∂qimt

∂pimt
(p)

+
∑
l∈H
l ̸=k

∂qlmt

∂plmt
(p)

∂qkmt

∂pkmt
(p)

(plmt − clmt) + νkmt.

To test the model, we assume that the imported brands do use static best responses, and

we test whether FOCs such as (6) describe the pricing of domestic producers. In particular

we do this by generalizing the model to allow for a “conduct” parameter, i.e.,

pimt −mmt = Wimtγ +
qimt(p̃D, p̃I(p̃D))
∂qimt

∂pimt
(p̃D, p̃I(p̃D)

+ ...

∑
j∈AB
j ̸=i

∂qjmt

∂pimt
(p̃D, p̃I(p̃D))

∂qimt

∂pimt
(p̃D, p̃I(p̃D))

(pjmt −mmt − cjmt) + κ
∑
k∈M,C

∂qkmt

∂pimt

∂qimt

∂pimt

(pkmt − ckmt) + νimt.

where, if the supermarkup explanation is correct, κ = 0. The intuition for the test is that

if the supermarkup really is a constant markup on a static Nash price then, controlling for

supermarkup using an appropriately defined fixed effect, price-setting should not be affected

by the incremental effect that a price has on the profits of other domestic brewers. On

the other hand, if there is an alternative type of deviation from CI Nash pricing then the

estimated κ may be significantly different from zero.

Testing the Supermarkup Model: Linear Controls. We use two different implemen-

tations of the test. The first is easy to implement (which means that we can use it for

monthly data) but relies on deviating from MSW’s precise assumptions by assuming that

supermarkups enter the FOCs linearly. Specifically, suppose that a domestic product i in
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market m has marginal cost cimt, and that the collusive plan operates by each domestic

product being priced according to static Nash best responses as if its marginal costs are

cimt + m′
mt rather than just cimt, where m′

mt is the supermarkup.50 One interpretation

would be that the domestic firms act as if they have to pay higher marginal retailing costs

than they actually do, a form of tacit collusion that might be hard to detect. In this case,

the first-order condition for an AB product is simply

pimt = Wimtγ +m′
mt +

qkmt(p)
∂qimt

∂pimt
(p)

+
∑
j∈AB
j ̸=i

∂qjmt

∂pimt
(p)

∂qimt

∂pimt
(p)

(pjmt −m′
mt − cjmt) + νimt. (7)

and, when we generalize to allow for conduct coefficients, the estimating equation becomes

pmt = Wmtγ +mmt −
(
Ωmt(κ) ◦

[
∂smt(pt, θ

D)

∂pmt

])−1

smt(pmt) + νmt. (8)

This equation has the nice feature that the level of demand and the demand derivatives

only depend on observed prices, and the unobserved supermarkup enters linearly. This

theory can be tested by including domestic market-fiscal year fixed effects to control for m′
mt,

and testing if conduct parameters equal zero. We use the domestic rival distance measures,

their ξs (averaged across their portfolios either before or after the JV) and interactions of

these variables as excluded instruments that identify the conduct parameters.

Columns (7)-(9) of Table D.7 present the results. As already discussed, we can reject

κ = 0 before the JV at any significance level, and we cannot reject the hypothesis that

“conduct” was the same before and after the JV.

Testing the Supermarkup Model: Nonlinear Controls. In the actual MSW model,

supermarkups enter the first-order conditions non-linearly by affecting the values of the

demand derivatives which, for domestic products, need to be evaluated at p̃D = pmt −mmt.

The second version of our test therefore estimates non-linear market-fiscal year fixed effects

for domestic products, where, as these fixed effects are varied, we re-evaluate the demand

derivative matrix and resolve for the Nash prices that the imported brands would charge in

response. This potentially creates a very large computational burden, especially when using

the RCNL demand model, even if we use quarterly data. To make estimation feasible, we

therefore proceed as follows.

First, we estimate all of the parameters, including the conduct parameters and the linear

parameters, separately for each fiscal year, so that we are only estimating 40 (39 supermarkup

50The incentive-compatibility constraints would determine the magnitude of the mmt supermarkup terms.
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fixed effects and 1 conduct parameter) nonlinear parameters at a time. We report the

conduct coefficients for 2005/6, 2006/7, 2009/10, and 2010/11 fiscal years (i.e., two full

fiscal years before the JV and after the JV), but we also estimate them for the partial fiscal

years in the sample, and the estimated coefficients are similar, but less precise. We expect

separate estimation to reduce the econometric efficiency and the power of our test, as will the

fact that we do not restrict the supermarkups to be consistent with cross-market incentive

compatibility constraints on the domestic brewers. However, in practice, our estimates of

the conduct parameters are precise. We also use the quarterly supply and RCNL demand

model. Recall that the results using this model in columns (3) and (6) of Table D.7 were

the most favorable to the hypothesis of Nash pricing before the JV.

Second, and more importantly, rather than recomputing demand derivatives, import best

responses prices and inverting matrices to back out implied marginal costs many hundreds

of times during estimation, we use interpolation from values that are pre-computed. Specif-

ically, before estimation, we compute implied marginal costs for each observed product-

market-quarter observation on a grid of supermarkups (mmt = {0, 0.25, 0.50, ..., 6}) and

conduct parameters (κ = {0, 0.05, ..., 1.1}) then use cubic interpolation to get the required

values during estimation (restricting the supermarkups and conduct parameters to lie within

these ranges). As a result, the computational burden for each function evaluation involves

the computation of around 6,000 cubic interpolations.

As usual, one might be skeptical about a researcher’s ability to simultaneously estimate 40

nonlinear parameters. However, in practice, MATLAB’s fmincon algorithm works very well

on this problem even when it uses numerical derivatives, and it delivers the same estimates

from alternative starting values. The conduct parameter estimates are also comfortingly

consistent with those from testing version 1 of the supermarket model.

The results are reported in Column (10) of Table D.7. Consistent with column (9), the

reported conduct parameters are precisely estimated and are between 0.9 and 1, and, because

estimated supermarkups are also positive, most of the implied marginal costs are negative.

Therefore, we can clearly reject the MSW formulation of CI collusion, although, as we have

emphasized, this does not imply that all models of CI collusion can be rejected.
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